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COMPUTER ANALYSIS
OF RING-STIFFENED SHELLS OF REVOLUTION

By Gerald A. Cohen
Structures Research Associates, Laguna Beach, California

SUMMARY

This report presents the equations and method of solution for a
series of five compatible computer programs for structural analysis of
axisymmetric shell structures. User manuals and other program
documentation for these programs are presented in a separate companion
report. These programs, designated as the SRA programs, apply to a
common structural model but analyze different modes of structural response.
They are:

(1) Linear asymmetric static response (SRA 100)

(2) Buckling of linearized asymmetric equilibrium states (SRA 101)

(3) Nonlinear axisymmetric static response (SRA 200)

(4) Buckling of nonlinear axisymmetric equilibrium states (SRA 201)

(5) Vibrations about nonlinear axisymmetric equilibrium states (SRA 300)

The theory of a sixth related program, for the imperfection sensitivity
analysis of buckling modes of nonlinear axisymmetric equilibrium states,
has been presented in a previous NASA report.

The structural model treated is a branched shell of revolution with
an arbitrary arrangement of a large number of open branches but with at
most one closed branch. The shell wall is assumed to be of orthotropic
material with principal axes of orthotropy in meridional and circumfer-
ential directions. Geometric properties of the structure may vary only
in the meridional direction; material properties of the shell wall may
vary in the thickness direction as well as the meridional direction. Also
treated are:

(1) discrete irotropic ring attachments,

(2) 1isotropic stringers, whose stiffness is circumferentially
distributed, and

(3) an idealized elastic foundation attached to the shell wall.



INTRODUCTION

During the past decade an almost bewildering variety of computer
programs has been developed for the analysis of shell structures (ref. 1).
When one narrows the field to those designed for elastic shells of
revolution, he is still confronted with the names of at least forty
authors in this country alone who have been active in developing pro-
grams of overlapping capabilities (refs. 1 and 2). At the time reference
2 was written, however, there were known to be only four major systems
which cover the most common problems of stress, buckling, and vibration
of elastic shells of revolution. In addition to the SRA programs of
this report, these include two finite-difference programs, BOSOR (ref. 3)
and SALORS (refs. 4 and 5), and Kalnins' forward integration programs

(ref. 6).

The SRA programs employ the Zarghamee version of the forward
integration method (ref. 7) for the solution of the basic linear bound-
ary value problem. This method requires the calculation of only four
complementary solutions, as opposed to the usual eight, over open branches.
The main features of the present system of programs which have not been
generally available in the other systems are:

(1) buckling analysis under general asymmetric loads,
(2) imperfection sensitivity analysis, and
(3) branched shell capability (see fig. 1)

User documentation for the present system of six programs is
presented in a companion report (ref. 8). As these programs have been
developed over a period of time, the theory underlying some of them has
already been published in the open literature (refs.9-12). The theory
of the nonlinear axisymmetric response program and the buckling program
for general asymmetric equilibrium states, which is a new program, have
not been previously presented. The purpose of this report is to bring
together the underlying equations and (improved) method of solution for
each of these programs except the imperfection sensitivity program, the
theory of which has been presented in a previous NASA report (ref. 13).
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SYMBOLS

ring or stringer cross—sectional area

ring centroidal radius

shell wall normal stiffnesses, eqs. (A-3)

ring or stringer elastic modulus

orthotropic elastic moduli

ring centroidal eccentricities relative to
corresponding boundary point on shell reference

surface

normal eccentricity of stringer centroid
relative to shell reference surface

linearized shell stretching strains

effective ring force loads per unit of
circumferential length

equivalent shell forces, agqs (78)
equivalent ring forces, egs. (79)

ring or stringer torsional stiffness
shell wall shear stiffnesses, eqs. (A-3)

stringer section moment of inertia about
circumferential centroidal axis

ring section moments of inertia

structural stiffness

elastic foundation moduli

effective shell moment loads per unit of area
ring stress couples

shell stress couples
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mass coefficients for shell inertial loads, eq. (109)

number of stringers

effective ring moment loads per unit of
circumferential length

circumferential harmonic number

effective shell forces per unit of circumferential
length in axial, radial, and circumferential
directions, respectively

local pressure for live pressure field at unit A
meridional and circumferential radii of curvature
small circle radius

meridional, circumferential, and normal
coordinates, respectively, of shell reference
surface

shell stress resultants

ring hoop force

ring potential energy

shell displacements in meridional, circumferential,
and normal directions, respectively

ring centroidal displacements

ring rotations

effective shell force loads per unit of area
axial and radial coordinates, respectively

normal distance of reference surface from shell
inner surface

shell stretching strains

ring hoop strain
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Vectors:

F

effective thermal loads (i = 0 or 1), eqs. (9)
effective free thermal strains

stringer free thermal strain

ring effective free thermal strain

ring bending strains

shell bending strains

load factor (for proportional loading)

load factor for nonlinear prebuckling state

limit load

orthotropic shell wall normal stiffness coefficients
A= Ag

eigenvalues

orthotropic shell wall shear stiffness coefficients

Poisson contraction ratios with meridional or
circumferential stress acting, respectively

shell displacements in axial, radial, and
circumferential directions, respectively

mass density
three-dimensional normal stress components

three-dimensional shear stress components

shell rotations about circumferential, meridional,
and normal directions, respectively

frequency of harmonic vibrations



Y eight (or six) element column vector of dependent
variables {P,Q,S,M;,E,n,v,x!}

¥p particular solution

Yc(k) complementary solutions

4x4 (or 3x3) Matrices:

[B1,[D] boundary condition matrices, eq. (25)

[6] effective [D] for interior boundaries, eq. (48a)

[D] additional effective [D] for closed branch
boundaries, eq. (55)

[e] ring eccentricity matrix, eq. (34a)

[k] ring stiffness matrix, eq. (30a)

[p],[ﬁ] matrices relating {c}, {d} of first subinterval
to that of final subinterval of a closed branch,
eqs. (59)

[S] scaling matrix for supplemental conditions,
eqs. (42)

(ul, [w] force and displacement submatrices of
complementary solutions, eq. (36a)

[(vl,[Z] additional force and displacement submatrices of
complementary solutions required on closed branch

[x] ring prestress matrix, eq. (103)

[ul ring mass matrix, eq. (112)

4x1 (or 3x1) Matrices:
{c} superposition constants, eqs. (37)

{d} additional superposition constants for a closed
branch, eqs.(52)

{G},{J} force and displacement submatrices of particular
solution vector, eq. (36b)




{L}
L)
{¢}

{zf}

{zt}

(e)
OPRS

{q}

{u}
{y}
{z}

effective boundary loads, eq. (25)
effective (L} for interior boundaries, eq. (48b)

nonhomogeneous ring matrix due to ring
eccentricity and thermal loads, eq. (34b)

nonhomogeneous ring matrix due to mechanical
loads, eq. (30c)

nonhomogeneous ring matrix due to thermal loads,
eq. (304) :

{lf} associated with externally applied loads

nonhomogeneous matrix relating {c} of first sub-
interval to that of final subinterval of a
closed branch, eq. (59%a)

}

ring displacements {ux,uy,u

LR
shell forces {P,Q,S,M;}

shell displacements {£,n,v,x}

Generalized field variables and operators:

H(e)

Ly (w

Ly (w)

Lll (il,V)

qi (u)

u

Uy2€4994

linear operator relating stresses and strains

linear operator representing linear part of the
strain-displacement relations

quadratic operator representing the nonlinear part
of the strain-displacement relations

bilinear operator defined by the identity
Ly(u + v) = Lo(u) + 2L1;(u,v) + La(v)

linear operétor representing conservative live loads
displacement

strain

stress

eigenfunctions



Subscripts:
0 prebuckling state variable

1,2,3 meridional, circumferential, and normal components,
respectively (same as s,¢,z)

( )(k) estimate after k iteratioms

Superscripts:

( )(a) antisymmetric component

(H® () /a

( )(s) symmetric component

! transpose

) load or linear response variable at unit X
(' 3a( )/3s

) 3( )/0¢

) 3( )/ar

Matrix subscripts:
0 evaluated at the initial point of a subinterval

1 evaluated at the final point of a subinterval

GOVERNING EQUATIONS

Mathematically speaking, elastic response problems of shell structures
are boundary-value problems in differential equations. In general, to
formulate such problems, it 1s necessary to start with a geometrically
nonlinear shell theory, i.e., one valid for rotations of moderate size.*
Also, an analogous theory for elastic rings must be available to formulate
boundary conditions associated with ring attachments. As a preliminary to
the formulation of specific types of response problems solved by the SRA
programs, suitable nonlinear theories of shells of revolution and rings
are presented in this section.

*In this approximation, both the strains and rotations are small compared
to unity, but the rotations may considerably exceed the strains.




Shell Equations

Nonlinear shell theories have been developed by Sanders (ref. 14)
and others. However, for the purpose of numerical analysis of shells
of revolution, it has been shown that Novozhilov's shell equations (ref.
15) have the advantage that, by the proper choice of dependent variables,
explicit reference to the meridional radius of curvature can be elim-
inated (ref. 9).

In reference 11, Novozhilov's equations have been generalized,
through the principal of virtual work, to include the nonlinear case of
moderate rotations. For numerical analysis, it is convenient to trans-
form the equilibrium and kinematic equations into a set of eight dif-
ferential equations in eight basic force and displacement shell variables
referred to fixed coordinate directions. Four of these variables are the
effective shell forces in axial, radial, and circumferential directioms,
denoted as P, Q, and S respectively, and the meridional bending moment
M;. These components act on normal sections tangent to small circles of
the shell reference surface (fig. 1) and are all measured per unit of
circumferential length along the small circle. The remaining four
variables are the analogous reference surface displacements, denoted as
£, n, and v, and rotation x. These variables, as well as the notation
used for other shell variables, are shown in figure 2. As shown, s,¢
reference surface coordinates are used where s measures meridional arc
distance from a reference small circle and ¢ measures circumferential
angle from a reference meridian. The normal distance z measured from the
reference surface completes the three-dimensional triad of directions.

The transformation of the equations is accomplished with the use of
the Gauss-Codazzi surface compatibility relations. Employing the prime

and dot to denote partial derivatives with respect to s and ¢, respectively,
the resulting equilibrium equations are

(rP)' + (r/Rz)S. - (Z/I)Mlz‘ - (r'/r)Mzn- (r/Rz)[(Tl + Tz)G].

+ r'(Top + T1ox) + r[(x/Ry)X; - r'X3] + 'Ly = 0

(xQ)' + r'S” -~ Ty + My /Ry = r'[(Ty + T2)8) = (r/Rp) (To¥ + Tyox)

+ r[r'%; + (£/Rp)X3] = (r/Ry)L; = 0 (1)

+ Xy = (r/Ry)L; =0

(xM))' + r[r'P - (2/R2)Q) - r'My + My, - (T1x + Tyo9) + rly = O

where the surface force (X;,X,,X3) and moment (L;,L;) components are
referred to undeformed coordinate directions (fig. 2).



The nonlinear terms in equations (1) can be conveniently thought of
as the following additional load terms applied to the linearized equatioms.

Xy = -[(T7 + Tp)e] /x (2a)
Xy = ~('/T)(T; + Tp)0 (2b)
X3 =0 (2c¢)
Ly = Toy + Tiox (2d)
Ly = =(Tyx + Ty2¥) (2e)

Additional effective surface loads dependent on the shell deformation
arise in the cases of an elastic foundation attached to the shell wall and
loading by a live normal pressure field. An orthotropic elastic
foundation is considered under the assumption that it produces reactions
per unit of surface area in meridional, circumferential, and normal
directions which are proportional to the corresponding shell displacements
at the surface to which it is attached. It is assumed that the

attachment surface is the shell inner surface (i.e., the surface of

inward pointing positive z-direction). In terms of the displacement of the
reference surface the foundation loads are

X, = <k1(u - zx) (3a)
Xy = -ky(v - z¥) (3b)
X3 = ~k3w (3¢)
L, = zX; (3d)
L, = -2X; (3e)

where kj, k,, and k3 are foundation moduli and z is the normal distance of
the reference surface from the inner surface. The effective loads of a live
pressure field Ap(s,$,z), assumed to act at the reference surface, are

X1 = ApX (4a)
X, = Apy (4b)
X3 = A[p(e; + ep) + udp/ds + vap/ad + wap/az] (4¢)
Ly =0 (4d)
L, = 0 (4e)

where e; and e; are the linearized stretching strains in meridional and
circumferential directions, respectively.

10




Equations (2), (3), and (4) isolate all terms of equations (1) other than
standard terms of a linear shell statics problem.

The four basic kinematic equations may be written in the form

E' = r'y + (x/Rp)e;
n' = -(x/Rp)x + r'eg
) . (5)
vl == /Ry = (£'/r)(n - V) + ey
x' =K1

where ej; is the linearized shearing strain and k) is the meridional
bending strain.

Equations (1) and (5) are eight partial differential equations in the
eight response variables P,Q,S,M;,£,n,v,X. Supplemental equations are
necessary to express the excess variables of these equations in terms of
the eight basic variables. The nonlinear strain-rotation equations and
the partially inverted constitutive equations provide some of the
supplemental equations. These are

e; = g1 - (1/2)(x* + 02)
ey = g9 = (1/2) (32 + 82) (6)
e12 = €12 - XV
and
Tp = Ar1€2 + A1pkp + A13Ty + ApuMp - 92(0) (7a)
My = Ag1ep + Agpkg + ApsTy + AguMy - @2(1) (7b)
€1 = Azre2 + Azpkp + AzaTy + AguMy (7¢)
K1 = Auyes + Auaky + Ay3Ty + AyuMy (7d)
My, = up1kz + w8 - 207, (7e)
€12 = Wa1K12 + U228 (7£)

where €;,e5,€1, and kj,ks,K1, are reference surface stretching and
bending strains, respectively, and

11



x (0)

Ty =T, + 01 (8a)
M =M + 91(1) (8b)
12 = K12 — €12/R2 (8¢)

§ =8 - (1/2)(Ty + T2)6 + 01,9 + 20,V /r, (8d)

The thermal loads Ol(m), Oz(m), and e;z(m), for m = 0 or 1, are given in
terms of the free thermal strains 6;, 65, and 6;, by*

0, ™ = JIEL/ (1 = v1v2)1(B) + vp83)z"dz + Ost(m)
Oz(m) = [[E2/(1 = v1v2)1(8; + vy81)2"dz N
@12(m) = fE126122mdz

where Ej, Ep, E12, V1, and vz are orthotropic shell wall elastic moduli,
the integrals are through the shell wall thickness, and Gst(m) are given
in terms of the stringer free thermal strain 6g. by

est(O) = (NEA/21rr)9s

1) _
st ezost

t (9a)

(0

Here NEA is the total stringer stretching stiffness and e, is the normal
eccentricity of stringer section centroids relative to the shell refer-
ence surface. The stiffness coefficients Aij and Hi4 in the constitutive
equations (7) are defined in Appendix A.

In addition to equations (6) and (7), the following equations
complete the supplemental equations.

Ty, =S = 2M),/R, = (1/2)(T; + T,)e (10)
and T); = (x/Ry)P + r'Q
e, = (n+v)/r
kp = [e'"(x +£7/0) + (v' - n)/R,]/x
K12 = e1p/Rp = (x - £/x) " /x
b= (v -n)Ry + (' /D)E" 1
6 = (£'/r)(v-n") - /R,
u= (r/R))E + r'n
w=-r't + (r/Ry)n

*Although the shearing free thermal strain 812 1s zero for an orthotropic
material, it will be seen to be convenient to include it in the formulation.

12




It may be noted that the only nonlinear terms appearing in equations
(5) through (11) are those in equations (6),(8d), and (10). Just as the
nonlinear terms in the equilibrium equations (1) may be viewed as
additional mechanical loads applied to the linearized equations, the
nonlinear terms in equations (6) and (8d) may be viewed as additional
thermal loads applied to linearized versions of these equations. Noting
that the three-dimensional strains e€je;,£72 appear in the stress-strain
relations as € - 67, €5 - 83,and €35 - 81, it follows that the nonlinear
terms of equations (6) are equivalent to the following additional free
thermal strains applied to the linearized equations,

81 = =(1/2) (x% + 62)
8r = —(1/2) (¥ + 82) (12a)
912 = -X’\p

which do not vary through the shell thickness. The corresponding thermal
loads are obtained by substituting equations (12a) into equations (9) to give

0y (m) = =(1/2)[c (M) (42 + §2) + ¢q, ™) (y2 + 2]
0, ™ = —(1/2)[c, ® (y2 + 82) + c1, @ (32 + 62)] (12b)
01,(m = —g )y

where the stiffness coefficients Cs(m), Clz(m), Cz(m), and Gs(m) are
defined by equations (A-3) of Appendix A. The nonlinear term in equation
(8d) is evidently equivalent to the additional thermal load

0150 = —(1/2) (T, + Tp)6 (13)

Finally, to identify the nonlinear term in equation (10) as an
additional load, note that the only places where T}, is required are in
equations (2d) and (2e). It therefore follows that this nonlinear term is
equivalent to the additiomal loads™

Ly = -(1/2)(T; + T3)x6
(14)

Lo

(1/2)(Ty + Ty)¥6

Thus, the general nonlinear field equations may be viewed as a standard
set of linearized equations with the additional load terms given by
equations (2), (3), (4), (12b), (13), and (14).

*#Since these loads are smaller then similar terms in equations (2d) and
(2e) by a factor of the rotation 6 , it is consistent with the moderate
rotation theory to neglect the nonlinearity in equation (10).

13



Ring Equations

When ring stiffeners are attached to the shell, boundary conditions
for the shell equations must be generated which represent the ring
behavior. Ideally, the ring reactions enter the shell at a single
meridional station, the ring boundary, on the shell reference surface
at which the shell displacements are continuous and related to the shell
force jumps in accordance with the governing ring equations. A set of
suitable ring equations are derived in this section.

As are the shell equations of the previous section, the ring
equations are based on moderate rotations and are derived through a
principal of virtual work. These equations are based on the following
assumptions.

(1) All geometrical and mechanical properties of the ring are
axisymmetric.

(2) The ring material is homogeneous and isotropic.

(3) The effects of nonuniform warping of ring sections, trans-
verse shear strains, and shear center eccentricity relative
to the section centroid are neglected.

The origin of ring cross-sectional x,y-axes is supposed to be at the
centrold of the ring section, i.e., /xdA = [ydA = 0 where A is the section
area. With respect to right-handed shell coordinates s,¢,z, x is chosen
positive in the axial direction acute to the positive (or negative) s-
direction if the positive z-direction points away from (or towards) the
axis of revolution, and y is chosen positive in the radial direction
pointing away from the axis of revolution (see fig. 3).

For a one-dimensional theory of rings the centroidal hoop strain
g4 1s the only stretching strain of consequence. The strain-displacement
relations are

ep = (ug + ug)/a + (1/2) (g2 + wy?)

kg = (uy = uy)/a?
T as)
kg = =(uy/a + wy)/a

T = (Vg - ug/a)/a
where xy and «y are the bending strains of the centroidal axis, in and
out of the plane of this axis respectively, and T is the twist per unmit

of circumferential length. Neglecting transverse shear strains, the
rotations ViysWy may be written in terms of displacements as

14




Wy = (u; - ug)/a 16)

W, = —ux/a

y

Integrating by parts the following expression for the virtual change in
potential energy

2m
8U = [o (Tgdey + Mydiy + Mydky + MysT)add
2m
~fo (Pxbuy + Fybuy + Fybuy + Nxswx.+ Nydwy + Nydwy)ads (17)

and applying the principle of virtual work, 6U = 0, yields the following

equations expressing equilibrium of forces and moments in the undeformed
coordinate directions (fig. 3).

(My/a - My/a + Ny - wyTy) + aFy = 0
(-M,/a - Ny + wT,) - T, + aF, = 0
' x b Sl ¢ y (18)
T¢—Mx/a-Nx+wa¢+aF¢=0
M,;+My+aN¢=0

For a one-dimensional ring theory, the constitutive equations are
unchanged from those for a straight elastic bar. Neglecting the effect
of nonuniform torsion, for a homogeneous, isotropic bar these are (ref. 16)

T¢ = EA(€¢ - 6¢)

Mx = EIxKx - EI, K

Yy (19)
My = -EIxny + EIyKy
M¢ = GJt

where the ring free thermal strain 6¢ is assumed to be uniform over each
cross section.

In analogy with the nonlinear shell equations, the nonlinear terms

in equations (15) and (18) may be viewed as effective additional mo-
ments and free thermal strain applied to the linearized ring equations.

15



These additional loads are

N = -WT (203)
X X ¢

N = «WT (20b)
y y ¢

EAB¢ = -(l/2)EA(wx2 + wyz) (20¢)

To reduce the ring equations to a more useful form, equations (15),
(16), and (19) are substituted into equations (18) to eliminate all
response variables except ug, Uys Ugs and Wy. With the understanding that
the nonlinear terms are represented in the load terms according to
equations (20), the resulting equations are

C - GJu) + " _w) + a(EL + GJ)w. = ad(aF. + N)
(EIyux GJux) EIxy(uy u¢) a( y )wa a’( < y

EI "+ aw.) + a2EAu_ + EI u_ + a2FAu
xy (U F 39) Y Xy ¢

s - EIxu

= a3(aF - N + EA®6
a’(afy - N, 8

. .. (21)
.. L] . _ 2 [ ] - 2 .
EIxy(ux + aw¢) + (EIxuy a EAuy) (a“EA + EIx)u¢

- .3 - - )
= a (aF¢ N_ EA6¢)

EI + GNDu_ + EI (u - u ) + a(EI
(BL, + GDw, + EL_(u) = u)) + a(ELw

_ oy L .3
77 GJW¢) a°N

¢

SOLUTION OF EQUATIONS

In this section the governing equations of the previous section are
specialized for the different modes of response treated, and the corres-—
ponding methods of solution are presented.

Linear Asymmetric Response (SRA 100)

This program solves linearized versions of the shell and ring equations
subject to harmonic mechanical and thermal loads. Since all load and
response variables are periodic functions of a ¢ with period 2w, they may
be represented as Fourier series in the form nZO(Ah ¢cos n¢ + Bn sin n¢),

where the harmonic amplitudes An and Bn are in general functions of s.
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If the loads have an axial plane of symmetry, say ¢ = O, then the
Fourier series for each load term reduces to a sine or cosine series.
A symmetrical loading is defined as one for which the expansions for X;,
X3,L2,91,62,F F ,N.,8, (denoted henceforth as normal type load variables)
are cosine serieg %he%eas the expansions for the remaining loads X;,L;,8;,
Fo Ny, Ny (denoted henceforth as shear type load variables) are sine series.*
The reverse is true in the case of an antisymmetrical loading, and a gen-
eral load consists of both symmetric and antisymmetric components (table I).

A symmetrical response is defined as one for which the expansions for
P,Q,Ml,g,n,x,ux,uy,w¢ (denoted henceforth as normal type response variables)
are cosine series, whereas the expansions for S,v, and U (denoted hence-
forth as shear type response variables) are sine series. The reverse is
true in the case of an antisymmetric response, and a general response
consists of both symmetric and antisymmetric components (table I).

Inspection of the nonlinear shell and ring equations shows that a
symmetric loading gives rise only to a symmetric respomnse. For the
linearized equations, it is also true that an antisymmetric loading gives
rise only to an antisymmetric response. Furthermore, for the linearized
equations, the response to each load harmonic is a pure harmonic of the
same wave number.

Symmetric load-response equations.- In this section the boundary-
value problem for the symmetrical response to the n-th harmonic of the
symmetrical load components is formulated. For the sake of simplicity,
the same symbols as used previously for physical load and response
variables will be used to denote the corresponding harmonic amplitudes.

Differential equations: Substitution of the symmetric load and
response components for the n-th harmonic into the linearized form of
equations (1) and (5) gives the following ordinary differential
equationsg,

(rP)' + n(r/Ry)S + n2(r'/r)My - 2(n/r)My, + r{(x/Ry)X; - r'Xsl
+ nr'Ly = 0
(rQ)' + nr's - (n2/Ry)Mp = Ty + r[r'X; + (r/Rp)X3] - n(x/Rp)L; =0
(rS)' + r'S - (n/Ry)Mp - nTy + rX, - (r/Ry)L; = 0 (222)

(xM)) ' + rr'P - (x/R2)Q] - r'My + 2nMj, + zLy = O

*It will be convenient in the remaining discussion to refer to free thermal
strains 6;,6,,015, and 64 as loads. More precisely, the thermal loads are
given in terms of the free themal strains by equations (9) for the shell
and as EA6¢ for rings.
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r'x - (r/Ry)e; =0

Y
-
[}

3
+

(r/Rp)x - r'e; = 0
(22b)
"= (n/Ry)E - (r'/r)(v+1mn) - e12 =0

<
1

X -k1=0

In these linearized equations, the elastic foundation loads, equations
(3), are considered to be included in the load terms with the given
applies loads; however, the live load terms, equations (4), are
neglected.

The supplemental equations, expressing the excess variables of
equations (22) and (3) in terms of the eight basic variables, are
equations (6), (7), and (8) with nonlinear terms omitted, plus the
following from equations (11)

u = (r/Rp)E + r'n (23a)
w=-r't + (r/Ry)n (23b)
T, = (r/Ry)P + r'Q (23c)
rep, = n + nv (234)
ko = r'(x - n2/r) + n(on + V) /R, (23e)
r(kyz - e12/Rp) = n(&/r ~x) (23£)
v = (an + v)/R, - nr'E/r (23g)

Equations (22) and the supplemental equations are a system of eight
first-order differential equations which may be written compactly in
vector form as

Y' = F(s,Y) (24)

vhere Y is the eight-element column vector (P,Q,S,M),£,n,v,x) [fig. 2(a)].

Boundary conditions: Branch edges, branch points, the closure point
of a closed branch, and the location of interior rings or other meridional
discontinuities are defined as boundaries. Additional artificial points
of subdivision of the meridian may be required to limit subinterval length
so that the small difference of large numbers does not occur in the
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superposition of complementary and particular solutions of equations (24)
(see p. 22). In general, the region of integration of equations (24)
consists of a main branch and subsidiary branches. The main branch is a
continuous line consisting of segments of the shell reference meridian
which in the case of only open branches begins at some arbitrary edge
and terminates at some other arbitrary edge. If the meridian contains a
closed branch (only one is allowed), the closed branch is the main
branch, which begins at some arbitrary nonbranching point and terminates
at the same point. At a branch point, only one branch exits the branch
point, i.e., has increasing s-values away from the branch point. All
other branches intersecting the branch point must enter the branch point,
i.e., have s-values increasing towards the branch point. All branches
entering a branch point are described by increasing s before the exiting
branch.

General linear boundary conditions for each boundary may be written
in the form

[Bla{y} + [D]{z} = {L} ' (25)

where {y} and {z} are 4x1 force and displacement subvectors of Y and

Ay} = #{y} at edges (26a)

+ -
{y} - Z {y} at interior boundaries (26b)

Ay}

In equation (26a), the minus sign applies only at the terminal edge (if
one exists) of the main branch; in equation (26b), {y}* is the value of
{y} at the boundary on the exiting branch, and z{y}~ is the sum of the
values of y on the branches entering the boundary. As implied by the form
of equation (25), at interior boundaries the displacement vector {z} is
continuous, i.e.

{z}" = (2} | (27)

The matrices [B], [D], and {L} are generated by SRA 100 in the case of
force-free or ring boundaries or dome closure edges. The first two types
are discussed here, whereas dome closures are discussed in Appendix B.

At force-free boundaries A{y} = {0}, so that

[B] = [I]
[p] = [0] ’ (28)
{L} = {0}
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Substitution of the symmetric load and response components for the
n-th harmonic into the linearized ring equations (21) yields

[k]{u} ='{zf} + {2} (29)

where [k] is the ring stiffness matrix given by

~ T
2(n2EI_+GJ)/a? YEI  /a? n3EI_ /a2 -n2(EI_+GJ)/a
n?(n y )/a n xy/ xy/ ( v )
L 2 2 2 2
[k] = % EA+n*EI /a® n(EA+n°EL_/a®) n EIxy/a
2 2 -
n (EA+EIx/a ) nEIxy/a
Symmetric EIy + n2GJ
| and {u}, {2¢} and {2} are ring centroidal displacement, and mechanical
and thermal load vectors given by (see fig. 3) "
u
x
ful= Y (30b)
Y
Y4
1
(aF + nN
X Yy
(1.} = 4 af, - oN, (30c)
aF - N
¢ X
aN
L ¢
0
1
{2} EAe¢ . (304)
0
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In order to derive boundary conditions of the form of equation (25)
from equation (29), it is necessary to relate the ring centroidal dis-
placement and load vectors, {u} and {4¢}, to the shell reference surface
displacement and force jump vectors, {z} and A{y}, at the corresponding
boundary point. Equilibrium of forces and moments at the ring centroid
gives, in terms of the ring eccentricities ey and ey [fig. 3(a)],

{2.} = [B]Aly} +f{zf(e)} (31)
where
B 0 -ne d—
(8] = & ne, 0 (32)
a 0 r 0
-ae ae 0 a
. x —

and {2 (e)} is given by equation (30c) with the ring forces and moments
per unit of circumferential length replaced by corresponding external
forces and moments. Furthermore, assuming that the ring centroid is
connected to the corresponding boundary point on the shell reference
meridian by a rigid link with the ring free thermal strain e¢, one
obtains the kinematic relation

{u} = [e]l{z} + {le} (33)

where [e] is an eccentricity matrix given by

0
0 ey
el =] ° 1 0 - (34a)
nex/r ney/r alr
0 0 0
*
e
X
{2e} - e¢ 0 (34b)
0
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Substitution of equations (31) and (33) into equation (29) yields
the desired boundary condition in the form of equation (25), where [B] is
given by equation (32) and

(D]
{L}

-[k][e] (35a)

—{zf(e)} - {o )+ [k} “ | (35b)

As a check of this result, it is noted that [B]—l = [e]T/r. Multiplication
of equation (25) by [B]~l shows that the self-adjointness (i.e. symmetry)
of equations (29) is preserved.

Method of solution.- The original method of solution of the linear
boundary-value problem, equations (24), (25) and (27), is denoted here as
the Gaussian elimination method (ref. 9). This method consists of
subdividing the range of integration (i.e., the shell meridian) into a
number of suitably small subintervals, the end points of which have been
denoted as boundaries in the previous section. A forward integration
scheme, such as Runge-Kutta, is used to integrate equation (24) over each
subinterval between consecutive boundaries, to obtain eight linearly
independent complementary solution vectors Y, k), k=1,...,8, and a
particular solution vector Y_ . Initially, a %ﬁ§ starting point of each

c

t
subinterval, the matrix of Eglumn vectors {Y ] is chosen to be the 8x8
identity matrix and ¥p the 8x1 null matrix. The boundary conditions (25)
and (27) are used to set up a system of algebraic equations for the
constants of superposition for each subinterval. These are solved
efficiently by Gaussian elimination in terms of 4x4 matrices, and the
results used to superpose the complementary and particular solutions to
obtain the desired solution. The subintervals must be small enough so
that the superposition of solutions des not involve taking the small
differences of large numbers, with a consequent loss of significance. It
is characteristic of this method that the information contained in the
boundary conditions is not used during the forward integration of the
differential equations and that the initial conditions used for the
complementary and particular solutions are arbitrary within the condition
that the 8x8 initial value matrix [gék)] should be nonsingular.

Later, Zarghamee and Robinson (ref. 7) proposed the use of starting
conditions for the complementary and particular solutions which imply
satisfaction of the boundary conditions. Since four conditions are
known at the initial edge, they reasoned that only four complementary
solutions are required to satisfy the four conditions at the final edge.
On the other hand, since only four conditions are known in terms of eight
variables at the initial edge, there is still some arbitrariness in the
determination of the starting conditions in this method.* Their technique

*As a consequence, the problem of "long subintervals" noted above remains
in the Zarghamee method. It is noted here that a new method, termed the
field method (ref. 17), which eliminates this problem as well as providing
other benefits, is currently being investigated.
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was generalized to general linear boundary conditions and open branched
shells by Anderson, et al. (ref. 2, Appendix A). During the course of the
present study, it was found that the supplemental starting conditions
proposed in reference 2 lead to the inversion of poorly conditioned
matrices. In this section the Zarghamee method is presented with new
supplemental starting conditions, and it is also generalized to include
shells with a closed branch.

Open branches: The 8x4 matrix of the four complementary solution
vectors [Y k)], k = 1,.¢.54, and the 8xl particular solution matrix Yp

are partitioned into 4x4 submatrices U,W and 4x1 submatrices G,J as
shown below (for simplicity in writing, the brackets and braces used for

4x4 and 4x1 matrices, respectively, are omitted in the remainder of this
section).

K] = |-U
[y &1 [w] (36a)
G
L= {-3—} (36b)

Then the desired solution y,z may be written for the i-th subinterval as
G + Uc, (37a)

J + Ve, (37b)

«
(]

N
(]

where ¢, 1s a 4x]1 matrix of superposition constants for the i-th
subinterval.

At a starting edge of an open branch, the boundary conditions (25)
may be written

Byy + Dzp = L (38)

where the subscript 0 denotes initial values. Substitution of equations
(37) into equation (38) shows that equation (38) will be satisfied
regardless of the value of ¢ for the subinterval considered if

f
o

BUg + DWy = (39a)

BGy + DJy =

[
=

(39b)

23



Equations (39) are then starting conditions for the matrices, U,W,G,J, at
an initial edge.

Equations (39a) and (39b) are respectively 16 equations in 32
unknowns and 4 equations in 8 unknowns and hence do not have a unique
solution. In order to formalize the procedure, it is necessary to augment
equations (39) with supplementary conditions such that

(1) the initial values Uy,W;,Gg,Jo are uniquely determined, and
(k)

(2) the complementary solution vectors ¥c

are linearly independent.

In Appendix C, it is shown that condition 2 will be satisfied for any
supplementary condition for Up,Wo of the form aUy + BWy = I, where o and
B are 4x4 matrices. In order to minimize the calculation of the initial
values, for any particular choice of a and B, it will be convenient to
choose the supplemental conditions for Gp,Jg as aGy + BJgp = 0. If B is
nonsingular, as is the case if no kinematic constraints are specified at
the boundary, a suitable set of supplemental conditions are obtained by
simply taking o = 0 and B = I, viz.

Wo =T . (408)

Jo =0 (40b)
Substitution of equations (40) into equations (39) gives

Ug = -8"1p (41a)
Gy = 3L (41b)

If B is singular, equations (40) are replaced by

Yo + SWy = I (42a)

tGo + SJO =0 (42b)

where S is a diagonal scaling matrix, the purpose of which is to provide
dimensional homogeniety to equat%ogs (42). The first three diagonal
elements of S are taken to be C; 0 /t, and the fourth diagonal element
is €1(2)/t, where t is an effective thickness given by

e = [120, P /c, (012 43)

and Cl(o) and Cl(z) are meridional stretching and bending stiffnesses
[see eq. (A-3) of Appendix A].
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Substitution of equations (42) into equations (39) gives the initial values

Wo = (BS 7 D) 'B (4ha)
Up = (I - SWp) (44b)
Jo = 3(BS ¥ 0y~ lL (44c)
Go = 38 (44d)

Since, conceivably, either BS + D or BS - D may be singular, both upper
and lower signs in equations (42) and (44) are allowed. Equations (44)
could of course be used as initial edge starting values in all cases;
however, the relative simplicity of equations (40) and (41) suggests their
use in the common case of nonsingular B.

At an interior boundary, at which several open branches may intersect,
the boundary conditions (25) and (27) may be written as (see fig. 4)
)
Bly - y ] + Dz =L
ij+l,0 j=1 ij,l iJ+1,O (45a)

ZiJ+1’0 = Zij’l s j = l,ooo’J (45b)

where ij are the subinterval numbers (generally nonconsecutive) of sub-

intervals terminating at the boundary, the number of which is denoted as
J. In equations (45) the first subscript refers to the subinterval
number and the second subscript 0 or 1 indicates evaluation at either
the beginning or end of the subinterval, respectively. Substitution of
equation (37b) into (45b) gives the cij for entering subintervals in

*
terms of CiJ+1 for the exiting subinterval, viz.

i, = W3 1-1(
J i’
Substitution of equations (37) into equation (45a) and elimination of ey
through use of equations (46), shows that equation (45a) will be
satigsfied regardless of the value of ¢, if

J+l

J +

14,0 T Iap 1 P V0t ) o 3T Bereed (46

*It is shown in Appendix C that W are nonsingular matrices.

i.,1

js
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+ DW

BU = .0 (47a)
1+1,0 17+1,0
BG; 41,07 DIy 41,0 L (47b)
J J
where
. J
D=D - B) Ay (48a)
J=1 73
. J
L =1L+ B) Ay (48b)
3=1 7]
and
By, = Uy 1%y 1.l (492)
j R i
A, =G -4, J (49b)
1 1j,1 14714,1

Equations (47) are the starting conditions for the matrices U,W,G,J on the
exiting branch of an interior boundary. Since they are of the same form
as equations (39), the starting values of these matrices are also given by

equations (40) and (41), or (44),with D and L replaced by D and L,
respectively.*

If the shell contains no closedbranch, a terminal edge will be
reached at the end of, say, the m—th subinterval. For this boundary, the
boundary condition (25) may be written as -

-Bym’1 + Dz = T, (50)

m,1

*It may be noted here that since the starting conditions for the
complementary solution matrices U,W are independent of the boundary load
vectors L, U and W are independent of all load (nonhomogeneous) terms in
both differential equations and boundary conditions. (The same will be
seen to be true for the additional complementary solution matrices V,Z
required on closed branches). Consequently, in a sequence of problems

in which only load terms change, the complementary solutions need be
computed just once.
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Substituting equations (37) into equation (50) and solving for c gives

-1
c, = (DWm,l - BUm,l) (L - DJm,l + ch’l) (51)

Starting with this value of c, equation (46) is used recursively to
obtain the cy for each subinterval, after which the solution is given
by equations (37).

Closed branches: The present method requires the calculation of four
additional complementary solution vectors on a closed branch. If the
matrix of these vectors is partitioned into 4x4 submatrices V and Z, the
desired solution may be written for the i-th subinterval on a closed
branch as [cf. eqs. (37)]

<
I

G + Uci + Vdi (52a)

J + Wci + Zdi , (52b)

N
]

where d; is an additional 4x1 matrix of superposition constants for the
i-th subinterval.

Equations (45) are the proper boundary conditions for an interior
boundary of closed branch. Since only one closed branch is allowed and
this must be chosen as the main branch (see p. 19), it follows that in
this case, subintervals i; and i;+l  are entering and exiting closed
branch subingervals, and i s J = 2,+++,J, are entering open branch
subintervals. Substitution of equations (52) into equations (45) shows
that equations (45) will be identically satisfied with respect to
cij (37=1,.00,J41), dil, and diJ+1 if cil is given by equation (46)

with jJ = 1, equations (47) are satisfied, and in addition*

-1
d. =2 A d
1, 7,1 Pt (53a)
¢;. =Wy 1-1(J1 41091 1Y 4 .0% 41 % 4,04 40 o
j j’ J 9 j’ lJ 3 J J L] J
J=2,,J (53b)
BViJ+1,O * P2y 41,0 " 0 (54)

*It is shown in Appendix C that Zi , are nonsingular matrices.
s

k|
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where

~

J
-1
D=D-B(V, .2, , + Y4, ) (55)

1°T 10 §=2 3

In Appendix C it is shown that eight linearly independent complementary
solution vectors (in subinterval ij+l) satisfying equations (47a) and (54)
do not exist if the corresponding boundary condition matrix B is singular.
Therefore, singular B matrices (i.e., kinematric constraint) are not
allowed at boundaries on a closed loop except at the closure (terminal)
point. Furthermore, in Appendix C it is shown that the linear independence
of the eight complementary solution vectors gc(k) depends on the non-
singularity of the initial values of W and Z. Therefore, the supplemental
conditions for equations (47) and (54) on a closed branch are always chosen
to be

w1J+1,o = z1J+1,o =1 (56a)
J1J+1,0 =0 (56b)

Substitution of equations {(56) into equations (47) and (54) then gives the
remaining initial values

-1
U = -B "D
1J+l,0
'/ )
iJ+l,0 (57)
-1
G = ~-B "L
iJ+l,0
The integration on a closed branch is started at an arbitrary
(nonbranching) point with the initial values
Ul,O = Zl,O =1 (58a)
Vijo=W,=0 (58b)
Gl,O = Jl,O =0 ' (58¢)

The solution for these matrices is continued by forward integration from
the initial point to the final (closure) point. At intervening boundaries
on the closed branch, the integration is restarted with the initial
conditions given by equations (56) and (57); at intervening boundaries
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on open branches, the initial conditions are given by equations (40) and
(41), or (44) for edge boundaries, and these same equations with D and L
replaced by D and L for interior boundaries. As each boundary on the
closed branch is passed, equations (46) with j = 1 and (53a) are applied

to generate relationships giving c3,d; in terms of ¢ ,dy of the exiting
subinterval, viz.*

€1 T Pl t (59a)
dl = pkdk (59b)

In view of equations (56), equations (46) for j = 1 and (53a) reduce tc
(setting i, = k and iJ +1=%k+1)

1
c, =W —1(c ~-J )
k k,1 k+1 k,1
-1 (60)
d, =12 d

k k,1 kil

Substitution of equations (60) into equations (59) and comparison with
equations (59) with k replaced by k + 1 gives the recursion relations

= W -1
Pr+1 T Pr'k,1
~ - -1
Prt1 = Pr 241 (61)

o -1
Y1 = I T Pu¥i,1 Tk

which are used with the initial wvalues

pp =P =1
(62)
q =0

to generate P> ﬁk’ apd Q- When the final subinterval is reached, the

A

matrices p = Pg» P = Py and q = dg will have been obtained.¥

At the closure point the boundary conditions (25) and (27) may be

*Here, k is an index for subintervals on the closed branch only,
k = l,oclo ’K.
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written as [cf. eq. (50)]

B(y1,0 = Ym,1) tP%,0 =L (63)
Z = 2
1,0 m,1

Substitution of equations (52) and (58) into equations (63), and
elimination of c¢; and d; through use of equations (59) with k = K gives the
following two equations for c and dm'

- L = -
B(p Um’l)cm + (Dp va’l)dm L + B(Gm’l Q) (6
W Cn + (Zm - P)dm = -J

m,l ,l m’l

The solution of equations (64) is

- - -1 - -
cm = (Dwm,l - BUm,l) L - DJm,l + BGm,l) (65a)
A -1
dm =@ - Zm,1> (wm,lcm + Jm,l) (65b)
where
5=-p-BV -2z )T
- m,l m,1l
Un,1 = Up,1 ~ P (66)
Gm,l = Gm,l -4

It may be noted that equation (65a) for cp is of the same form as that
for the open branch [eq. (51)]. Starting with these values for ¢  and
dp, equations (60) are used to obtain cy and dy for closed branch sub-
intervals, and equations (53b) and (46) are used to obtain c; for open
branch subintervals. The solution on the closed branch is then given by
equations (52) and on open branches by equations (37).%

Antisymmetric loading.- As has been noted on page 17, for the
linearized shell and ring equations, the response to antisymmetric load
components 1s also antisymmetric. It is shown in this section that the
antigsymmetric response can be obtained from the solution of the symmetric
load-response equations, outlined in the preceding sections.

*The equations used for the calculation of the components of the three-
dimensional stress tensor from the solution for the y and z vectors are
given in Appendix D.
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Considering as typical normal and shear type loads the normal
pressure X3 and the circumferential shear X,, respectively, one has

X3 = ) [X3n(s) cos n¢ + X3n(a)

n=0

sin n¢])
(67)

(s)

X2 = ) [in sin n¢ + in(a) cos né]

n=0

Here the superscripts (s) and (a) refer to symmetric and antisymmetric
components, respectively. Considering as typical normal and shear type
response varlables the meridional stress resultant T; and the shear stress
resultant Ty,, respectively, one has

T, = z [Tln(s) cqs n¢ + Tln(a) sin n¢]

n=0 (68)
T2 = z [len(s) sin n¢ + len(a) cos n¢]
n=0
From the identities
sin n¢ = cos(nd - w/2)
(69)
cos n¢ = -sin(nd - 7/2)
if follows that the antisymmetric load components are equivalent to
symmetric components about a rotated plane according to
X3 (a) sin n¢ = X3n(a) cos(n - m/2)
" (70)
in(a) cos n$ = _in(a) sin(n$ - ©/2)

(a) (a)

symmetric response equations will give the amplitudes T; and T;, corres-
ponding to the solution

Therefore, using the amplitudes X3 = X3n in the

and X, = -in

T; cos(né¢ -~ w/2) = T; sin nf
(71)
Ti, sin(n$ - ©/2) = =-T;, cos n¢
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Comparison of the right hand sides of equations (71) with equations
(68) shows that

n (72)
(a)

n = -T2

T2

One therefore concludes that the same equations used for the
symmetric components can be used also to obtain the antisymmetric
components ‘if the signs of the shear type antisymmetric load amplitudes
are reversed before the solution and the signs of the shear type anti-
symmetric response amplitudes are reversed after the solution. Hence,
the complementary solutions and the [B],[D] boundary matrices for the
symmetric response components of a particular harmonic can be used also
for the antisymmetric response components of the same harmonic.

Buckling of Axisymmetric Equilibrium States (SRA 101)

This program calculates bifurcation buckling modes of linearized
asymmetric prebuckling states. The structural loading is assumed to
have a given spatial distribution, but its magnitude is allowed to vary
in proportion to a load parameter A. This leads to a set of eigenvalue
equations for the critical load A,. A general form of the eigenvalue
equations for bifurcation buckling and their method of solution are
presented in Appendix E. In the development presented there, no
restrictions are placed on the structural geometry or loading, and non-
linear prebuckling states are included. In this section the iteration
equations (E-11) and the inner product [eq. (E-6), required to calculate
the eigenvalue estimate according to the Rayleigh quotient, eq. (E-19)]
are specialized to ring-stiffened shells of revolution assuming linear-
ized prebuckling states and neglecting prebuckling rotations.

Iteration equations.~ For numerical purposes, the differential form
of the variational iteration equations (E-11) is more convenient to use
and is derived here. First, the differential form of the variational
eigenvalue equations (E-4), from which the iteration equations follow,
is obtained. Applying the usual procedure of taking the difference of
the governing shell and ring equations evaluated for an initial (pre-
buckling) equilibrium state and an adjacent (buckling) equilibrium
state, and linearizing the resulting equations for the perturbation
variables, leads to the buckling eigenvalue equations. The nonlinear
shell and ring equations have been presented earlier in the form of
linear differential equations with nonlinear (and live load) terms
isolated as additional effective mechanical and thermal loads given by
equations (2), (4), (12), (13), (14), and (20). Hence, the eigenvalue
equations are obtained in the same form as the linear system of equations
[with dead load terms dropped from the linearized form of eqs. (1), (7), (8)
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and (21)] with effective additional loads derived from equations (2), (4),
(12), (13), (14), and (20). Since, however, prebuckling rotations are

- neglected in this analysis, the contributions from equations (12), (13),
(14), and (20c) are not retained. This leads to the following addition-—
al effective loads: from equations (2)

X1 = -A[(T) + Tp)e) /x

X, = ~A(x"/r) (T, + Tp)6

X3 = 0 - (73)
Ly = A(Tay + Ty2x)

Ly, = —l(;]-fl)( + lell))
from equations (4), for live pressure loading,

Xy = Apx

Xy = Apy .
X3 = Ap(e; + ej)

Ly =L, =0

which are identical in form to equations (4) except that pressure gradient
terms are neglected, and from equations (20a,b)

Z
[]

-AT ., w
X

X ¢

=z
]

AT 75
v A ¢Wy (75)

F =F =F, =N, =0
x 'y ¢ )

In equations (73), (74), and (75), unbarred variables represent buckling
mode variables, and barred variables represent unit load prebuckling
state variables.*

The iteration equations are then obtained by setting A = 1 in
equations (73), (74), and (75), interpreting the unbarred variables in

*Note that since only linearized prebuckling states are treated, in the
notation of Appendix E, Xg = 0, ug =09 = 0, and X = y.

33



these equations as being known inputs from the previous [(k - 1)-th]
iteration, and solving the linear system of equations with these loads for
the variables of the present (k-th) iteration.

In general, both the prebuckling and buckling variables of equations
(73), (74), and (75) are represented by Fourier series in the circum-
ferential coordinate ¢. Since the product of two Fourier series is also
a Fourier series*, it is seen that each iteration step reduces to an
ordinary linear statics problem with multiharmonic loading. The solution
for each component (symmetric and antisymmetric) of each harmonic of the
effective loading is presented in the preceding discussion of linear
asymmetric response (SRA 100). Inspection of equations (73), (74), and
(75) shows that a symmetric prebuckling state results in decoupled
symmetric and antisymmetric buckling modes, whereas an antisymmetric or
a general prebuckling state results in a buckling mode with coupled
symmetric and antisymmetric response (cf. p.17). Even in this case,
however, the symmetric and antisymmetric components of each harmonic
for each iteration step are calculated independently (cf. p. 30).

Inner product.~ After each iteration step, the Rayleigh quotient
[eq. (E-19)] is used to calculate the corresponding eigenvalue estimate.
For this purpose, it 18 necessary to be able to compute inner products,
defined by equation (E-6). Since prebuckling rotations are neglected,
equation (E-6) reduces to

(1)

(u;l-:l) = gy ’L11(u’1~1) - ql(u)-ﬁ (76)

Evaluation of equation (76) for moderate rotation theory of ring-
stiffened shells of revolution gives

(@59 = [T {f [0 + 68) + To(vf + 00)
=0

+ To(xd + ¥X) - p(xu + yv

+ {e] + eylw)]rds + z aT

L (wxax+wy€ry)}dq> an

¢

where u and u are any two kinematically admissible displacement fields,
the integral over s ranges over the whole meridional length of the shell,

*Multiplication of Fourier series is discussed further in the description
of subroutine MODINT, ref. 8, p. 93.
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and the summation over r ranges over all attached rings.

Comparison of equation (76) with the variational eigenvalue
equation (E-4c), with terms depending on prebuckling rotations dropped,
shows that the inmer product is, in this case, nothing more than the
work of the effective loads (for unit \) associated with the displace-
ment field u (or u) acting through the displacements G (or u). This
observation can be made explicit as follows. From equations (1),
equivalent shell forces are defined as

F1 = -(r/Rz)Xl + r'(X3 - Ll./r)

F, = -r'X; - (r/Rp)(X3 ~ L; /1)

(78)
F3 = =X, + Ll/RZ
Fy = -1
and, from equations (21), equivalent ring forces are defined as
FL, = -(an + Ny )
FL, = -(aF_ - N_)
yox (79)
FL3 = -(aF, - N)
FL, = —aN
4 ¢
Substituting the expressions for u,w,0,y from equations (11) and the
expressions for wy,w, from equations (16) into equation (77), then
performing integrations with respect to ¢ by parts, one obtains the
alternate expression for the inner product
~ 27 ~ ~ ~ ~
(usu) = fo [fS(F1£ + Fon + F3v + Fyx)rds
+ ]z: (FLyu + FLzuy + FL3u,) Jd¢ (80)

where the equivalent forces are given by equations (78) and (79) with
effective loads given by equations (73), (74), and (75) with A = 1.

In equation (80), each of the displacements and equivalent forces are
represented by a Fourier series in the circumferential coordinate ¢.
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Therefore, the integrand and summand are also Fourier series. However,
because of the ¢-integration only their axisymmetric components contribute
to the inner product and higher harmonics may be ignored.

Nonlinear Axisymmetric Response (SRA 200)

This program solves the nonlinear large-deflection shell equations
for the case of axisymmetric torsionless loading. The loading is
assumed to be proportional with the load parameter A, and the first (and
possibly second) derivatives with respect to A of the response variables
[i.e., linear perturbation state(s)] at an input load level ip, as well
as the nonlinear response at Ay, are calculated. The numerical solution
for the nonlinear state is based on a generalization of Newton's method
for calculating the roots of nonlinear algebraic equations by iteration.
In addition, for purely mechanical loading, Ehe prebuckling structural
stiffness Ky (ref. 18) and its derivative Ky 1 at Ao are computed. As
in reference 18, K is defined as dA/dA, where A is the '"work deflection"
defined such that the area under the A - A curve represents the work of
the external loading. As shown below, Ky and Ko(l) are useful in
calculating the value of a limit load A*, at which the Newton iteration
does not converge (fig. 5).

Formulation of equations.- For axisymmetric torsionless loading, shear
type load and response variables (cf. p.17 ) are identically zero, and
the equations associated with them (the axisymmetric torsion equations)
are dropped from the system of governing equations, thereby reducing their
differential order from eight to six. Since the general nonlinear
equations are of the same form as the linear equations plus additional
effective load terms, the differential equations are obtainable directly
from equations (22) with n = 0. These are

(rP)' + r[(r/Rz)Xl - r'X3] = 0
(rQ)' - Ty + r[r'X1 + (r/Rz)X3] =

(M) ' + r[r'P - (x/Ry)Q] - r'Mp + 1Ly, = 0
(81)

E' = r'x = (r/Ry)e; 0

(]

0

n' + (r/Ry)x - r'e;
x' - k1 =0

The supplemental equations are equations (7a-d), linearized by replacing
€1,€2 by ej,ep, equations (8a,b), (23a-c), and from equations (23d,e)
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b

e> = n/r
(82)
r'x/r

K2

Effective loads, in addition to real proportional (dead) loads AXl, AX3,
2671, Aez, are from equations (2),

Ly = -T1x (83a)
X1 =X3=L; =0 (83b)

plus equation (3a,c,e), (4a,c,e)*, and from equations (12)

g1 = -x2/2 (84a)
6o =0 (84b)

Equations (81) and its supplemental equations are a system of six first-
order differential equations which are of the same form as equation (24),
where now Y is the six-element column vector (P,Q,M;,Z,n,x) and F is a
nonlinear vector function of Y. Note that all of the nonllnearity is
exhibited in the two effective load terms Lo and 6;.

The effective ring loads due to nonlinear terms [egs.(20)] are
identically zero, since the ring rotations are shear type variables.
Therefore, for axisymmetric torsionless loading, the ring equations and
associated boundary conditions are linear. Other boundary conditions are
also assumed to be linear so that equation (25) applies. However, in
this case [B] and [D] are 3x3 matrices, and the force,displacement, and
load matrices, {y}, {z}, and {L}, are 3x1 matrices. For rings, equations
(29)-(35) apply with n set to zero and the third row and column of each
matrix deleted.

Newton's method.- Following Thurston (ref. 19) a generalization of
Newton's method for differential equations is used to reduce the non~
linear boundary-value problem to a sequence of linear boundary-value
problems. In this method, the iteration equations are derived by
assuming that the solution is given by a small correction to an approxi-
mate solution @initially taken as the linear solution) and linearizing the

*The effect of the pressure gradient terms inequation (4c) is neglected
in the program,
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differential equations with respect to the correction.* Substituting the
solution ¥(k) after k iterations

Yo " een t )

into equation (24), linearizing with respect to &Y, and using equation (85)
to eliminate §Y, gives the iteration equations

L. = -
Ty ~ Bl = F - Fy¥(k-1) (86)
wvhere F, is a matrix, the (i,j) element of which is the derivative of

i-th camponent of F with respect to the j-th component of Y, and F and
EY are both evaluated for Y = ¥(k—1)' Equations (86) are a linear system

of equations; which, when supplemented by the boundary conditions (25), are
solved by the Zarghamee method (p. 22).

For the specialized equations of the previous section, each variable
can be written as in equation (85). Only the nonlinear terms given by the
additional loads of equations (83a) and (84a) need be expanded, i.e.

L2(k) = "Tl (k)x(k) = -(Tl (k-l) + GTI)(X(k—l) + GX)
1% (k-1) T T -1y X T X (1) 8T

Te-X@) " XD ) T T -1 X @1y 8D

and similarly

el(k) = —X(k—l)x(k) + (l/z)X(k_l)z (88)

*In this method, each iteration step ylelds an approximate solution which
satisfies the boundary conditions exactly, but the differential equations
only approximately. In reference 20, an alternate form of Newton's
method is proposed, whereby the unknowns to be corrected are the initial
values of Y for each subinterval. In this method, each iteration step
ylelds an approximate solution which satisfies the differential equations
exactly, but the boundary conditions only approximately.
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The last term on the right-hand side of each of equations (87) and (88)
are nonhomogeneous terms known from the previous iteration, whereas the
remaining terms are linear in the variables T; and x of the present
iteration.

It may be observed that in general if ¥( -1) is an exact solution of
equation (24), then the solution of equation %86; is Y(x) = Y(x-1). as it
should be in the limit as k = =, However, in this case equations (86)
represent the variational equations about the equilibrium state Y(k-1)-
Therefore, if the load Ay 1s at a limit load A%, a unique solution for
Y(k) does not exist (i.e., the system becomes singular). Since a unique

solution for g(k)’ given an exact solution gék-l)’ is a necessary condition

for convergence, clearly the iteration method diverges at a limit point,
and in fact, the rate of convergence becomes impractically slow for Ay
sufficiently close to A%,

In practice, however, it is not necessary to observe divergence of
the method in order to estimate A*. This may be done using the stiffness
Ko and its derivative Ko(l) obtained at Ao < A* (fig. 5). Since at A%,

Kg = d\/dKp = 0, in the vicinity of A*, A may be expanded approximately as

A = A% + aKj? (89)

The constant o is evaluated by differentiation of equation (89) with
respect to Ky to give

dA/dKo = 1/Ko(l) =~ 20Ky (90)

Substitution of equation (90) into equation (89) shows that as Ap
approaches A*, \* may be computed as

Ak = Ao - K0/2K0(1) (91)

The evaluation of Kp and Ko(l) is presented in the description of sub-
routine STREN in reference 8, p. 106.

Linear perturbation states.— The calculation of Kp and Ko(l) requires
the determination of not only the nonlinear response at the given load Ay,
but also the first and second derivatives of the response (with respect to
A)  at Ag.t The differential equations for these states are obtained by

TThe first derivative state is always computed since it is required input
to the buckling program SRA 201.
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differentiation of equation (24) with respect to A to give

@y ® g (922)
2)! (2) _ (1)
Y - ~Y¥ = EYYX (92b)

where Fyy is a matrix, the (i,j) element of which is the second derivative
of the i-th component of F with respect to the j-~th component of Y, and
Fy and Fyy are both evaluated at the converged nonlinear solution Y.

The corresponding boundary conditions are equations (25) with {L}
replaced by the unit load {L} for the first derivative state and {L}
replaced by {0} for the second derivative state. Since equations (92) and
the boundary conditions are linear, they are also solved by the Zarghamee
method. Comparison of equations (92a,b) with (86) shows that insofar as

gk = Y k% Y, the homogeneous forms of these three equations are
identical. onsequently, the complementary solutions obtained in the last
Newton iteration may be used in the calculation of g(l) and 2(2)

The nonhomogeneous terms of equations (92a,b)_are obtained by
differentiating with respect to X the dead loads Axl, AX3, Ael, 205, the
live loads given in equations (4a,c), and the effective loads given by
equations (83a) and (84a). For Y(l , this gives

X; = X3 + px

X3 = X3 + ple] + ep) + £5p/9x + nop/dy

Ly =0 (93)
61 = 6

8y = 6

where £,n,X,e;,e; are response variables of the nonlinear solution.
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(2)

For Y , one obtains
X = 2px(1)
K3 = 2pCer P + e, M) + 26 W apr0x + 20D ap/ay
Ly o 2, ) .
61 = —X(l)2
8y = 0

Equations (92a) and (92b) are then equivalent to equations (81) and its
supplemental conditions with nonhomogeneous load terms given by equations
(93) and (94), respectively.

Buckling of Axisymmetric Equilibrium States (SRA 201)

This program calculates the bifurcation buckling modes of nonlinear
(or linear) axisymmetric torsionless prebuckling states. The structural
loading is assumed to have a given spatial distribution, but its magni-
tude is allowed to vary in proportion to a load parameter A. This leads
to a set of eigenvalue equations, which are linearized with respect to A
by expanding the prebuckling state variables in a Taylor series in u =
A ~ Ag, and retaining only linear terms in u.

Geometrically, this method consists of examining the stability of
fictitious equilibrium states on the tangent to the nonlinear load-
deformation curve at an assumed load Ay below the critical load. For
loads near Ay, the corresponding fictitious states are good approximations
to the neighboring nonlinear states. Consequently, as Ap is increased
towards the critical load, the fictitious critical loads obtained approxi-
mate with increasing precision the actual critical load. For each Ag,

the method of successive approximations is used to obtain the fictitious
critical load.

A general form of the eigenvalue equations for bifurcation buckling
and the method of solution are presented in Appendix E.* 1In the
development presented there, no restrictions are placed on the struc-
tural geometry or loading. In this section the iteration equations
(E-11) and the inner product [eq. (E-6), required to calculate the
eigenvalue estimate according to the Rayleigh quotient, eq. (E-19)]
are specialized to ring-stiffened shells of revolution under axisymmet-
ric torsionless loading.

*A more specific formulation giving additional details is presented
in reference 11.
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Iteration equations.- For numerical purposes, the differential form
of the variational iteration equations (E-1l) is more convenient to use
and is derived here. First, the differential form of the variational
buckling equations (E-~1) and eigenvalue equations (E-4), from which the
iteration equations follow, are obtained. Applying the usual procedure
of taking the difference of the governing shell and ring equatiomns
evaluated for an initial (prebuckling) equilibrium state and an adjacent
(buckling) equilibrium state, and linearizing the resulting equatioms
for the perturbation variables, leads to the basic buckling equations
[eqs. (E-1)]. The nonlinear shell and ring equations have been presented
earlier in the form of linear differential equations with nonlinear (and
live load) terms isolated as additional effective mechanical and thermal
loads given by equations (2), (4), (12), (13), (14) and (20). Hence, the
buckling equations are obtained in the same form as the linear system of
equations [with dead load terms dropped from the linearized form of egs.
(1, (7)), (8) and (21)] with effective additional loads derived from
equations (2), (4), (12), (13), (14) and (20). However, as mentioned
previously, the terms of equations (14) are of higher order for moderate
rotations and are therefore neglected. Furthermore, it is shown in
reference 11 that it is consistent with this approximation to neglect the
thermal load of equation (13). For axisymmetric torsionless loading, the
remaining equations give the following additional effective loads:

from equations (2),

X; = =[(Ty, + Tzo)B]'/r (95a)
X, = -(r'/r)(Tlo + Tzo)e (95b)
X3 =0 (95¢)
Ly = Tz ¥ + x T12 (95d)
Ly = =(Ty x + x,T1) (95e)

from equations (4),

X3 = Apx
Xy = Apy

(96)
X3 = A[p(e; + ey) + £3p/ox + nodp/ayl

Ll‘LZ-O
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from equations (12a),

8, = =XgX
62 = 0 (97)
812 = ~XV

and from equations (20),

2
]

y ~ “Too¥y (98)

[+>]
it
L
fi
Lo |
[]
&)
]
=z
]
o

In equations (95)-(98), variables with the subscript 0 are prebuckling
state variables at the load A, and the remaining response variables are
buckling mode variables.

Inspection of equations (95)-(98) shows that not only are the equations
for individual harmonics of the buckling variables decoupled, but also
that the symmetric and antisymmetric components of each harmonic are
decoupled. Therefore the buckling equations may be written in terms of
symmetric or antisymmetric harmonic amplitudes of a single buckling
harmonic. Equations (22) and their associated supplemental equations
apply to the amplitudes of symmetric components of the n-th harmonic of
the buckling mode. The loads for these equations are given by equations

(3) and (95)-(97) with equation (95a) replaced by the corresponding-
symmetric load amplitude

X; = -(n/r)(Tlo + T20)6 (99)
where from equations (11)
6 = (r'/r)(v + nn) + (n/Ry)E (100)

Boundary conditions for ring boundaries are give? ?y equations (25),
(32), (35a), and (35b) with {2,} = {2,} = {0} and {2¢®)} given by
equations (30c) and (98), where from equations (16) the symmetric
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rotation amplitudes for rings are

v, = —(nuy + u¢)/a
(101)
Wy = nux/a
Using the kinematic equation (33), relating shell and ring displace-
ments, the effective load vector for this case may be written as
L} = [x1[e]{z} | (102)
where n? O 0 O
[c] = (T, /a) n? o 0 (103)
bo 1 0
Symmetric 0

Since the equations for antisymmetric components are the same set of
equations with n replaced by -n, inspection of these equations shows that
antisymmetric buckling modes have the same critical value of ) as
symmetric buckling modes, and therefore need not be considered.*

In order to apply the iteration method, it is necessary to search for
eigenvalues in a sufficiently small neighborhood of an estimate A = Xg,
so that in this neighborhood the prebuckling variables T; , Ty , Xp» and
T, have a linear dependence on A, Setting 0 0

%0
A= Ag +ou (104)

one has, to first order in u+
8]
Ty (A) =Ty + uT
l0 l0 lO

(1)

I}

T, (\) T, + T
2, 2, 2, (105)

1)

1

Xxo(A) = xo + uxo

N D)
T¢0(A) T¢o * UT¢0

*Antisymmetric buckling mode shapes are derivable from the corresponding
symmetric buckling mode shapes simply by changing the sign of the ampli~-
tudes of either the shear or normal type variables.

+Henceforth, variables with the subscript 0 are assumed to be evaluated
at X = ig.
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The eigenvalue problem for u is then obtained by substituting equations
(104) and (105) into the effective additional load (amplitude) terms
given by equations (99), (95b-e), (96), (97), and (102). Each of the
effective load terms are thus split into two parts, one part independent
of p, and a second part linear in u. The set of equations so formed
corresponds to equations (E-4) of Appendix E.

The iteration equations (E-11) are obtained by setting u = 1 in the
second parts of the effective load terms and interpreting the buckling
mode variables of these parts as being known inputs from the previous
iteration. Thus the first parts of the effective loads become homogeneous
terms and the second parts become nonhomogeneous terms for the equivalent
linear problem of each iteration.

Inner product.- After each iteration step, the Rayleigh quotient
[eq. (E-19)] is used to calculate the corresponding eigenvalue estimate.
For this purpose, it is necessary to be able to compute inner products,
defined by equation (E-6).* Evaluation of equation (E-6) for ring-
stiffened shells of revolution under axisymmetric torsionless loads gives

I 2m - - ~ o
(u,03u,0) = f¢=o {/1Ty ) (xx + 686) + T, (1)(.*!"1’ + 66)
s 0 0
+x$P () + Ty + Tyo9 + T1o9) - pxu - pYv - (ple + ey}

+ £3p/3x + ndp/dy)wlrds + z aT

L, - ~
L (wxwx + WyWy)}d¢ (106)

do

where u_and u are any two kinematically admissible displacement fields
(¢ and o being corresponding stress states), the integral over s ranges
over the whole shell meridian, and the summation over r ranges over all
attached rings. Since prebuckling variables are axisymmetric, if
buckling varfables are considered to be amplitudes of symmetric harmonic
components, the integral over ¢ in equation (106) can be replaced by the
factor m (or 2n in the case of an axisymmetric buckling mode). Before
doing so, however, a more concise form of the inner product is derived
from equation (106).

Comparison of equation (E~6) with equations (E-4) shows that the
inner product is equivalent to the work of the second part of the
effective mechanical loads and negative free thermal strains (for unit )

*The inner product is alsoc used for orthogonalizing mode estimates with
respect to lower eigenmodes when calculating nonfundamental eigenvalues.
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associated with the displacement and stress fields u,c (or u,s) acting
through the displacement and stress fields u,0 (or u,0). This observation
can be made explicit by using equations (78) and (79) and integrating by
parts with respect to ¢, as was done previously for SRA 101. The result is*

(u,05u,0) = [((F1E + Fan + Fav + Fyx - 1181 - T1,0)5)rds

+ z (FLlux + FLzuy + FL3u¢) (107)

where the equivalent forces are given by equations (78) and (79) with L,
Nx°, and N,° replaced by their symmetric components nLj;, nNy, and nN_,
respectively, and effective loads given by equations (99), (95b-e), (96),
(97) and (98), with A replaced by unity and prebuckling quantities
replaced by derivatives with respect to A at Ag. In equation (107) the
factor 7 (or 2m for axisymmetric buckling) representing the integration
with respect to ¢ has been dropped.

Vibrations About Axisymmetric Equilibrium States (SRA 300)

This program calculates free vibration modes about nonlinear
axisymmetric torsionless equilibrium states. The eigenvalue equations for
the square frequency w? of harmonic vibrations about an equilibrium state
are similar in structure to the eigenvalue equations for the critical load
increment p for buckling in the vicinity of the same equilibrium state.
As such they are solved by the same method of successive approximations
as discussed previously for SRA 201. In this section the iteration
equations solved and the inner product, used for calculation of the sequence of
eigenvalue estimates and also for mode orthogonalization when obtaining
nonfundamental modes, are presented.

Iteration equations.- The eigenvalue equations for vibrations about
an equilibrium state are obtained from the eigenvalue equations for
buckling in the vicinity of the same equilibrium state by replacing the
incremental loads proportional to u in the buckling problem by the inertial
loads proportional to w2 of harmonic vibrations. Based on the thin shell
assumption that each normal element acts as-a rigid body with five degrees
of freedom, the timewise amplitudes of shell inertial loads due to harmonic

*Equation (107) differs in sign (which is immaterial) from the inner
product as given in reference 1ll.
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vibrations of frequency w are
X, -.wz[m(o)u + m(l)x]
X, = wz[m(o)v + m(1)‘”
%3 = w7 Oy (108)
L = —wz[m(z)w + mcl)v]

L, = wz[m(Z)x + m(l)u]

where the mass moments per unit of surface area are given by the integrals
through the shell wall thickness

m(i) = f pzidz for 1 =0, 1, or 2 (109)

Similarly for homogeneous rings, assuming that each cross section acts
as a rigid element, one obtains

. a2
F w pAux

F_ = wpAu
y y

= m2
Fy = wiphu, (110)

= 2 -
N w p(wax Ixywy)

-4
]

2
Iw -1 w
w4p ( Ty Xy x)
N, = w2p(I +1I
wsp ( x y)w¢

As previously discussed for the buckling equations, the eigenvalue
equations need only be written for the symmetric components of each
circumferential harmonic, in which case equation (99) replaces equation
(95a). The corresponding boundary conditions for ring boundaries are
given by equations (25), with [B] and [D] defined by equations (32),
and (35a). In addition, the effective load {L} has two components, one
given by equation (102) and the other obtained from equations (35b) with
{e,} = {2} =0 and {lf(e)}determined by equations (30c) and (110). This
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second component may be reduced to

{L} = -w?[u]lle]l{z} . (111)
where
- =
a?A+n?1 n?1 nl 0
y Xy Xy
a2A+n?1 nl 0
1=t * * (112)
aZA+1 0
x
2
_Fymmetric a (Ix+Iyl

The iteration equations are obtained by setting the eigenvalue
parameter w? = 1 in equations (108) and (111) and interpreting u,v,w,X, and
¥ in equations (108) and {z} in equation (111) as being known inputs from
the previous iteration. These equations thus give the nonhomogeneous terms
for the equivalent linear problem of each iteration.

Inner product.- In analogy with the method presented for buckling
(see also ref.10), after each iteration for an estimate u(k) of vibration
mode displacements, an eigenvalue estimate w(k)2 is obtained from the
Rayleigh quotient in the form

2a” " @y a1 G 2w’ (113)

where (u,ﬁ) denotes the inner product of any two kinematically admissible
displacement fields.* The inner product represents_the work of the inertial
loads associated with the displacement field u (or u) acting through the
displacement field u ( or u). It may be written in a form similar to
equation (107). 1In this case, however, there are no inertial free thermal
strains and the fourth component of equivalent inertial ring forces

FL, [eq. (79)] is nonzero. Therefore in place of equation (107), one has?

(u,0) = [ (P + Fon + F3v + FyX)rds

+ z (FLIGX + FLzﬁy + FL3u

+ FLuw¢) (114)
T

¢

*The inner product is also used to orthogonalize eigenmode estimates with
respect to known lower modes in order to force convergence to a higher mode.

+Equation (107) differs in sign (which is immaterial) from the definition
given in reference 10.
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where the equivalent forces are given by equations (78) and (79) with L;°,
N ", and Ny' replaced by their symmetric components nL), nNy, and nNy,
respectlveiy, and effective loads given by equations (108) and (110)  with
w? set to unity.

CONCLUDING REMARKS

The governing equations and their method of solution have been pre-
sented for stress, buckling, and vibration response of branched, stiffened
shells of revolution under axisymmetric and asymmetric loads. In general,
the numerical solution is reduced to the solution of a sequence of linear
boundary value problems in ordinary differential equations. These are
solved by the Zarghamee technique, in which initial conditions for comple-
mentary and particular solutions (obtained by forward integration) are
chosen so as to satisfy identically the boundary conditions as the
corresponding boundaries are passed. This method is more efficient,
requiring only half as many complementary solutions for open branch
problems, than the more common method of superposition of complementary
and particular solutions with arbitrary initial conditions. However, it
does not eliminate the problem of "long subintervals" associated with
rapid growth of complementary and particular solutionms.

A further improvement in the method, which eliminates the long
subinterval problem, as well as providing increased efficiency, is
currently being evaluated. This new method has been termed the "field
method," and it eliminates the calculation of complementary and particular
solutions altogether. The efficiency of the field method may make feasible
within the scope of the present techniques more advanced problems, such
as nonlinear response under unsymmetrical loads.
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APPENDIX A

SHELL STIFFNESS COEFFICIENIS

The coefficients
given by

Xij’ uij in the shell constitutive equations (7) are

0 1 0
A1l = ‘Clz( )113 - C12( )Alu + Cz( )

1 2 1
A2 = A1 = -012( )lls - C12( )Alu + Cz( )

(0) ¢h)

A3z + Cy2

A13 = =31 = Ci2 A3y

0 1
Ay = =Ay1 = 012‘ )lsu + C12( )

(1)

Ayy

2 2
Aoz = =Cj2 ""A23 - C12( )qu + Cz( )

(2)

Aa3 = =A3zp = Cyo  “Az3z + Ciz2 “Azy

(A-1)
1 2
Ay = =Ayo = Clz( )Aau + Clz( )qu
A3y = 01(2)/A

Agy = Ayuz = -Cl(l)/A

Ayy = Cl(o)/A

W @@ _ o2y,

M1l
B12 = -uz) = 2061 + 29(2)/R2]u22
Upp = [c(o) + 4(;(1)/112 + 4G<2)/R22]"1

C1(°)C1(2) - 01(1)2 (A-2)

where A

50




and for m = 0, 1, or 2

c,® = ¢, 4 ¢, (m

Cson) = [[E1/(1 =~ vyvy)120dz
Cz(m) = I[Ezl(l - \)1\)2)]zmdz

(A-3)
Cro® = [[vE,/( - vyvy)]2Rdz

G(m) = Gs(m) + Gst(ng

Gs(m) fEl zzmdz

In equations (A—B;, the integrals are through the shell wall thickness,
and C e m, Gst(m are stringer contributions given by

st(O) = NEA/27r
Cst(l) - ezcst(O)

P = wEr/ome 4 e 20 O (A-4)
Gst(O) = Gst(l) =0

Gst(Z) = NGJ/8nr

where e, is the normal eccentricity of the centroid of stringer cross
sectionS relative to the shell reference surface.
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APPENDIX B

SHELLS WITH DOME CLOSURES

Dome closures are treated by deleting a small spherical cap containing
the pole and generating appropriate boundary conditions for the artificial
edge so created.* These boundary conditions, which represent the deleted
cap to first order in the edge radius, are derived in this appendix.

As shown in the main body of this report, all of the problems
treated reduce to the solution of a standard linear statics problem with
pseudo monoharmonic loads. Furthermore, as noted previously (p.30 ), the
solution for antisymmetric load components may be obtained from that for
equivalent symmetric load problems. Therefore, dome boundary conditions
need only be written for the case of linear static response under symmetric
pure harmonic loading.

Based on the finiteness of strains, one can derive, in a manner
similar to that of reference 21, the following results valid at a pole

n?g = 0
n+nv=20
an+ v =20 (B-1)
(n2-1)x = 0
£ =x
e; = n (B-2a)
e, = ﬂ + av (B-2b)
~e1, = #an (B-2c)
K] = *x (B~-2d)
-y =y (B-2e)
E=xtn/R T (B-2f)

*In evaluation of integrals over the shell meridian, a first-order
correction is made to account for the contribution over the deleted cap
(see p. 29 of ref. 13).
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For the terms with ambiguous signs in equations (B-2), the lower signs
apply at a terminal pole, at which r' = -1, and the upper signs apply at
all other poles, at which r' = 1.* The dots above symbols denote
differentiation with respect to the radius r. Equations (B-1) and (B-2)
are basic equations from which the dome boundary conditions are derived.

Zero'th Harmonic (n = 0)

From equations (B-1) and (B-2), the following relations hold to
first order in r at the artificial edge

n=or = rej

(B-3)
X = ri = triky
Using equations (7c¢,d) and (23c-e), equations (B-3) become
+raz3Q + razgMy - (1 + A13)n 3 Aosx = ~r[13301 (0 + ag,0, ()]
(B-4)

Tra3,Q + tAgyM; - Ayn i (1 + X)X -r[)\3401(0) + }\L,L,Gl(l)]

Two additional conditions may be derived from the first and third of
the equilibrium equations (22a), which for n = 0 reduce to

(rP)' = r{r'X3 - (r/Ry)X;]
(B-5)
(rZS)' = r[(r/Rz)Ll - er]
Since ( )' = ()r', in the vicinity of the pole equations (B-5) may be
written as
P = rX; + 0(1‘2)
. (B-6)
r?8 = £r2(L;/R, - X,) + 0(r3)

where the loads X3 and L;/R; — X, may be taken as their values at the
artificial edge. Integration of equations (B-6) between the limits r = 0
and r = r, and neglecting 0(r2), gives at the edge

*This is in accordance with the specified description of the reference
meridian (see pp. 18-19).
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conditions for n = 0.

[B] = £

(D] = -

{L} = -r

P = (r/2)X;3

§ = (xr/3)(L1/Ry - X3)

0
triz;
0
Trisy

OCOOHK

1+ X13)

COOO

A1y

+X3/2

x3301 (0

0
0
1
0

1
+ A3u40)
+(Xy - L1/Ry)/3
A3401(0) + luuel(l)

[eNeNoeNo]

0
TAzy

0
TAyy

0
*Ao3
0
(1 + Xoy)

First Harmonic (n = 1)

In this case, equations (B-1) yield at the pole § - ryx

(B-7)

Equations (B-4) and (B~7) constitute the dome closure boundary
They are equivalent to equation (25) with

(B-8a)

(B-8b)

(B-8c)

=€—rx

= n+ v=0, so that one may write at a small distance from the pole

£ - rx = 0o(x?)

n+ve=r(n+v) + 0(r2)

(B-9a)

(B-9b)

Equation (B-9a) yields immediately the first-order condition
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However, equation (B-9b) does not yield any new information, since
substitution of equation (B-2b) for # + ¥, and elimination of e, through
equation (23d) results in the identity n+ v = n + v. In place of
equation (B-9b), equations (B-2a) and (B-2c) can be used to form the
relation

re; * rejp = 0(r?) (B-11)

Using equations (7c,f) and (23c-f), and neglecting 0(r?), equation (B-11)
becomes

t(A23 = w12)(E/r = x) = (13 + X32/R2)(n + v) % rA33Q * 1uy,S + rAguMy

At this point it is desirable to evaluate the term £/r - y. For this

purpose it is necessary to compute { - ry at the pole. Differentiation
gives

E-rx=§-1(- 2% (B-13)

At the pole r = 0, so that substitution of equation (B-2f) gives

E - 1rx = -x t n/Ry ’ (B-14)

Since, as already noted, £ - rx = £ - rx = 0 at the pole, one may write at
a small distance from the pole

E - 1x = (r2/2)(-x * n/Ry) + O(rd) (B-15)
Therefore, to first order in r, the following relation holds
g/lr - x = r(- i + ﬁ/Rz)/Z = -r(ejo/Ry * k1)/2 (B-16)

in which equations (B-2c,d) have been used., Substituting equations
(7d,£) and (23c-f) into equation (B-16) and solving the resulting equation
for g£/r - x gives

E/r = x = £y + Apu/Rp)(n + v)/2 ~ (x/2)[A3,Q + u22S/Ro

£ huMy £ 234009 £ a0, MM/ + Oy - u12/R0) /2] @-17)

55



Substitution of equation (B-17) into equation (B-12) to eliminate &/r - ¥
gives the desired boundary condition

Tr(Air3z = A2d3u)Q * THp2(A1 - A2/Rp)S + r(A1d3n ~ Apdyu)My
+ [A2(M1y + A24/Rp) = Aj(A13 + A23/R2)1(n + W)

= rl(Ahsy ~ A1233)01 (0 + (Aphuy = Arngy)e; ()] (B-18)

where Ay =1+ (Ao - u12/R2)
(B-19)
Ay = (A23 - u12)/2

Two additional conditions may be derived from the equilibrium equations
(22a). For n = 1, the second and third equations and the first and fourth
equations may be combined to give

r'[r(Q - 8)]

r'[x(eP + M) ]

r[X, - r'X; - (r/Ry)X3]

r{r[r'X3 - (£/Rp)X;] - 'Ly - Ly} (B-20)

+

(x/R) [x(Q - 8)]

In the vicinity df the pole, equations (B-20) may be written as

[r(Q - 85)]

[r(xP + M;)]

r(#X, - X;) + o(r?)
(B~-21)

-r(L) t Ly) + o(r?)

where the loads X;, X2, L, Lo may be taken as their wvalues at the
artificial edge. Integration of equations (B-21) between the limits r = 0
and r = r, and neglecting 0(r?) gives at the edge

Q-5

P + M

(r/2) (+X3 - X3)
(B-22)

-(r/2)(L; * Ly)

Equations (B-10), (B-18), and (B-22) constitute the dome closure
boundary conditions for n = 1. They are equivalent to equation (25) with
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0 0 0 0
[B] = +|0  *r(Aidsz-Az)sy)  *rupa(A1-A2/Rp)  r(Apdgu—Aoduwd|  (g_s3,)
0 1 -1 0
r 0 0 1
1 0 -r
_ |0 A3 Aj 0 _
[D] = 0 o o 0 - (B-23b)
0 0 0 0
) (0) 1
(L} = p{R2r3u—A1A33)01 27" + (ApAuy=A123,)0; (P (B-23c)
(i’Xz-Xl)/z
~(LliL2)/2
where
A3z = Ay(A1y + Aoy /Rp) = A (13 + A23/Rp) (B~24)
Higher Harmonics (n 2 2)
In this case, equations (B-1) yield at the pole, £ = n=v=x = é = 0.

In view of equations (B-2), the following relations therefore hold to

first order

X

Using equat

in r at the artificial edge

fl
[a]
3
]

re;

r(ne, * ejz)/n? (B-25)

]
d

= Y = frK]

ions (7c,d,f) and (23c-f), equations (B-25) can be put in the

form of equation (25), where
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[B] = ¢

rOOOO'

D] =

lﬁC)CJOl—"

0

23301 (0 + 23,0, 1)

{L} = -r 0

1l
>\3t+91(0) + quel( )
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*riss3 0
0 TH22
*risy 0

0

-(I+X13+n2X23/2R2)

tn(1-u12/2Rp)
=(A1y+n?)rz4/ 2Rp)

TA3y

TAyy

0
-n(A13+r23/R2)

0
-n(A14+A24/R2)

(B-26a)
. _
F(1-n2/2)A23
(B-26b)
nuyo/2
F[14+(1-n%/2)224]
(B-26¢)



APPENDIX C
SUPPORTING LEMMAS FOR ZARGHAMEE METHOD

In this appendix several basic aspects of the Zarghamee procedure
are clarified in order to provide some formal justification for this
method.

Supplemental Initial Conditions

As noted in the discussion of the Zarghamee method (p. 24), the
supplemental initial conditions chosen should insure linear independence
of the complementary solutions. This question is clarified by the
following lemma: Any supplemental condition of the form

[a][Ue] + [B}IWo] = [I] (c-1)

where [a] and [B] are 4x4 matrices, insures linear independence of the four
complementary solutions on open branches.

The proof is as follows: As is well known, linear independence of a
set of complementary solutions of a system of ordinary linear differential
equations implies linear independence everywhere.* Therefore it is
sufficient to show linear independence at the initial point alone. Linear
dependence of the complementary solutions at the initial point is equivalent
to the existence of anon-null 4x1 constant matrix {c} such that

[Uglfc) = {0}
(c-2)
[Wol{c} = {0}

Postmultiplication of equation (C-1) by {c} shows that equations (C-2)
imply {c} = {0}, contradicting the requirement of non-null {c}. Q.E.D.T

*Since a linear combination of solutions of a system of homogeneous linear
equations is also a solution, if it wvanishes at one point, by the
uniqueness theorem of initial-value problems, it vanishes everywhere.

TThis argument may also be used to prove linear independence of the
additional four complementary solutions on a closed branch. It does not,
however, prove linear independence of all eight complementary solutions
on a closed branch.
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Nonsingularity of [W] and [Z]

The Zarghamee method involves the inversion of [W] at the final
points of subintervals on open branches [see eqs.(46) and (49a)], and
inversion of [W] and [Z] at the final points of subintervals on a closed
branch [see eqs. (53) and (55)]. In this section it is shown that these
final point matrices are always nonsingular, so that their inverses exist.

Let us denote the final value of [W] for a typical subinterval by [W;].
Consider the columns of the 8x4 matrix of complementary solutions [3] as
the static solutions for a shell whose extent is the subinterval considered
and which has null surface loads and initial boundary conditions given by
equation (47a) and the final boundary conditions

W] = [W1] (C-3)

Since equations (C-3) are displacement conditions, it follows from the
uniqueness theorem of linear elasticity that the corresponding solutions
are unique. Now assume that [W;] is singular, i.e. one of its columms,
say the i-th column, is a linear combination of the other three.* Since
equations (47a) and the differential equations are linear and homogeneous,
and the solutions are unique, it follows that the i-th solution must be
the same linear combination of the other three solutions. Thus the
assumption of singular [W;] contradicts the result of the preceding
section, in which it is shown that the supplemental initial conditions
insure the linear independence of complementary solutions.

The above argument can be applied without change as well to [Z], for
which equation (47a) is replaced by equation (54). [For the first sub-
interval on a closed branch, equations (47a) and (54) are replaced by
equations (58b).]

Kinematic Constraints on a Closed Branch

For the Zarghamee method to be used on a closed branch, it is
necessary that all eight complementary solutions be linearly independent.
In this section, the conditions under which eight linearly independent
complementary solutions exist are derived.

As noted on pages 23 and 27, the 8x8 matrix of complementary solution
vectors Y, (k = 1,:+-,8) on a closed branch is partitioned into four

*The possibility that one of its columms is null 1s excluded since this
would imply that the corresponding complementary solution is identically
zero.
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4x4 submatrices,*

[¥C_(k)] _ [UlV] (C=4)

Wiz
A necessary and sufficient condition for the Y (k) to be linearly
independent is that the determinant of the matrix [Y, (k)] be nonzero. As
noted previously (p. 59), the value of this determinant at any point will
suffice, and its value A at the initial point of a generic subinterval
is calculated below. The first subinterval of a closed branch may be
excluded from further discussion, sinece in this case it is obvious from
equations (58a,b) and (C-4) that A = 1.

For any other subinterval of a closed branch, A is evaluated as
follows. Assuming that initially U is nonsingular, the first row of the
right-hand side of equation (C-4) premultiplied by wu~l is subtracted
from the second row to give

vv| _ v v_
A= lu zl B lo Z-WU lvl
= |u]-|z-wutv| (c-5)

In order to evaluate the second factor of this result, note that from
equation (47a),

wol = -p-13 (C-6)

Substituting equation (C-6) and using equation (54) to eliminate BV, one
obtains

Z-wlv=2z-plpz

=51 - p)z (c-7)

*For the sake of simplicity, the brackets and braces used for 4x4 and 4x1
matrices, respectively, are omitted in the remainder of this section.

THenceforth in this discussion, it is assumed that U,V,W,Z are evaluated
at the initial point of the subinterval.
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Evaluating the difference D - ﬁ from equations (48a), (49a), and (55),
equation (C-7) becomes

1

Z-WU V= ﬁ'ln(vlzl'l - U1W1_l)Z (C-8)

where, here the subscript 1 denotes values at the end of the preceding
closed branch subinterval. Substitution of equation (C-8) into equation
(C-5) gives

A= |U vlzl'1 - Ulwl'll/lﬁl (c-9)

.

B

Since from equation (C-6), |W| = -|B|+|U|/|D|, an alternate form of

equation (C-9) is

Vlzl-l - U1W1-l|

A= -|W

.|z

It follows from equation (C-9) that if B is singular, A = 0 and
therefore linearly independent complementary solutions do not exist in
the subinterval. Since equation (C-9) is derived without the use of supple-
mental initial conditions, this conclusion is true regardless of the
choice of these conditions. Since singular B is equivalent to kinematic
constraint, for the Zarghamee method kinematic constraints are not allowed
on a closed branch except at the closure point.

(C-10)

Equation (C-10) is used to guide the choice of supplemental initial
conditions on a closed branch. The simplest possible choice consistent
with the requirement that initially W and Z should be nonsingular is
used, viz, W =2 = I {cf. eq. (56a)].
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APPENDIX D
CALCULATION OF SHELL STRESSES

After solution of the shell equations for the eight basic force and
displacement variables [fig. 2(a)], SRA 100 (and SRA 200) proceeds to
calculate all components of the three-dimensional stress tensor except
the transverse normal stress o,, which is negligible for a thin shell.
The equations used for the calculation of these stresses:are presented
in this appendix.

According to the Love-Kirchhoff thin shell hypothesis, neglecting
terms of order z/R relative to unity,* the primary (i.e., in~surface)
shell stresses for an orthotropic wall are given by

GS = [El/(l - vlvz)][el + Vo€ag + Z(Kl + V2K2) - (91 + Vzez)]
0¢ = [Ez/(l - V1V2)][€2 + vye; + Z(Kz + lel) - (92 -+ vlel)] (D-1)

°S¢ = E12(€12 + 2zKk32)

In order to compute these stress components from eqs. (D-1), all that is
needed are the stretching (e;,¢2,€12) and bending (kj,kp,k}2) strains of
the reference surface. After solution of the differential equations for
the basic force (y) and displacement (z) vectors (see pp. 22-30), these

strains are given by eqs. (23d-f) and (7¢,d,f) with the aid of eqs. (23c)
and (8).

The transverse shear and normal stresses may then be obtained by
integration through the shell thickness of the three-dimensional equa-
tions of equilibrium. In terms of symmetrical stress amplitudes (table
I) these equations are, assuming no body forces and neglecting terms of
order z/R relative to unity,

dog,/3z = -Bcslas - (n/r)os¢ + (r'/r)(o¢ - ag) (D-2a)
ac¢z/32 = -Bcs¢/3s + (n/r)o¢ - 2(r'/r)cs¢ (D~2b)
d0,/3z = —(l/r)a(rcsz)/as - (n/r)%z + og/Ry + c¢/R2 (D-2¢)

where R; is the meridional radius of curvature. Inspection of eqs. (D-2)
shows that for thin shells the transverse stresses Ogz»04pz20z CaN be

*Here, R represents either principal radius of curvature (R; or R,) of
the reference surface.
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significant (i.e., >> z/R times a primary stress) only in a boundary-layer
zone, where s-differentiation is tantamount to multiplication by a factor
much larger than 1/R, or if n/r >> 1/R. On the other hand, even in a
boundary-layer zone, for the thin shell hypothesis to remain valid it is
necessary that 0g,,04,,0, << 0g,04,0g4. Accepting this as being the case,
it is clear from eqs. (D-2) that the transverse normal stress ¢, is
negligible, even in boundary-layer zones and hence need not be computed.

In practice, eqs. (D-2a,b) are integrated with respect to z starting
at the shell wall inner face. At this face og, and Opgy are given as -X;
and -X, by eqs. (3a,b) for an attached elastic foundation or are simply
zero if no foundation exists. In evaluating the s-derivatives on the
right-hand sides of eqs. (D-2a,b) the differential equations (22) are
used to obtain derivatives of response variables, whereas derivatives
of wall properties and thermal loads are neglected.
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APPENDIX E

GENERAL BUCKLING EQUATIONS

In this appendix the treatment of the buckling equations (based on
moderate rotation theory) without restriction of structural geometry or
loading is presented. This development may therefore be taken as the
basis for both the bifurcation analysis of linearized asymmetric
equilibrium states (SRA 101) and the bifurcation analysis of nonlinear
axisymmetric equilibrium states (SRA 201). Although set in a more
general context, this development follows along the same lines as that
of reference 11.

Eigenvalue Equations

Buckling equations without restriction on structural geometry or
loading distribution have been presented in reference 18. As presented
there, the variational form of these equations for the buckling mode
variables u, 0, € in terms of the prebuckling equilibrium state
variables ug(X), og()) at a load factor A (for a proportional loading) is

€ L; (u) + Lll(uo,u)

o = H(e) (E-1)

0'680 + oo-Lll(u,Gu) - )\ql(u)°6u =0
where
580 = L]_((Su) + L11(u0,6u) (E-2)

In order to apply the iteration method for bifurcation problems, it is
necessary to search for eigenvalues in a sufficiently small neighborhood
of a load estimate A = );3, so that in this neighborhood the prebuckling
state variables up(A), op()) have a linear dependence on A. Setting

A= Ag + U, one has, to first order in y,T

ug(A) = ug + uug(D)
(E-3)
gg(A) = og + uoo(l)

Substitution of equations (E-3) into equations (E-1) and (E-2) yields the

tHenceforth, variables with the subscript O are assumed to be evaluated
at A = XAg.

65



linear eigenvalue problem with eigenvalues Hys i=1,2,...(arranged in the
order of increasing absolute value)

e = L(u) + Lyj(ug,u) + uLy;(up(D),u) (E-4a)
o = H(e) (E-4b)
o+8eg + og*Ly1(u,8u) = Apqi(u)+du
+ uloeLyy(ug™,6u) + 0o 4Ly (u,8u) - qy(u)+6u] = 0 (E-4c)
Orthogonality of eigenfunctions is obtained by setting Su = u, in
equations (E-4c) evaluated for the i-th eigenvalue, interchanging 1 and

j, and subtracting the resulting two equations. With the aid of
equations (E-2), (E-4a) and (E-4b), this gives the result

(y - uj)(ui,oi;uj,oj) =0 (E-5)
where the inner (scalar) product is defined by*

(“1’°1;“J’°j) = 00(1)
(1)

'L11(ui,uj) + Ui'Lll(uO(l),uj)

+ oj°L11(uo ,ui) - q1(u1)°uj (E-6)
It is noted that the second and third terms on the right-hand side of
equation (E-6) represent prebuckling deformations (i.e., rotatiomns), and
the last term represents conservative live loads (i.e., a normal pressure
field). Also, the inner product is seen to be a symmetric functional,
i.e., (ui,oi;uj,cj) = (uj;oj;ui,oi) From equation (E-5) it follows that

eigenfunctions corresponding to distinct eigenvalues WM, are orthogonal,

i.e. i
(ui,ai;uj,cj) = 0 , i#] (E-7)

Similarly, evaluation of equation (E-4c) for the i-th eigenvalue with
Su = u, gives the expression for the eigenvalues in terms of the
eigenfunctions, viz.

Wy o= '[°°°L2(“1) +o,ce, - XoQ1(u1)°ui]/[co(1)'Lz(ui) - q1(u1)°ui] (E-8)

*For Ao = A., the critical load, this definition of the inner product is

equal to the functional F(l)(ui,uj) defined in reference 18.
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The right-hand side of equation (E-8) (with the index i deleted) defines
the Rayleigh quotient, which may be used to obtain an estimate p for u;

if estimates u, o, € for w1, 0;, €; are available. However, in applying
equation (E-8) in this way, care must be taken that u, ¢ and u satisfy the
kinematic equation (E-4a), in addition to o, ¢ satisfying equation (E-4b).
Such kinematically admissible functions admit the eigenfunction expansions

b2
e

[«
[y

(E-9)

-
Q

[y
[

Q
I
[N
it~18 HE~1 8
’—l

R
[y

Forming from equations (E-9) the inner product (u,c;uj j) shows that, in
view of equation (E-7),

Iterative Solution of Eigenvalue Equations

The iteration method consists of successive solution of the following
modified form of equations (E-4)

E(k) =13 (u(k)) + L11(Uo,u(k)) + Lll(uo(l),u ) (E-11a)

(k-1)

G(k) = H(e(k)) (E-11b)

o(k)-GeO + 00-L11(u(k),6u) —Aoql(u(k))'éu + c(k_l)'Lll(uO(l),Gu)

+ 00 L1y (u g gy089) = q1lug_gy) 6u = 0 (E-11c)

where the subscript (k) denotes the solution after k iterations. The
estimates u(y), > € k; cannot be used directly in the Rayleigh
quotient to o ta1n an estimate u (k)? nor do they admit eigenfunction
expansions, since in general u( and u would not satisfy the
k1nemat1c equatlons (E-4a). ;s the%efore nécgssary to relate

5 to modified Varlables o K)* (k) such that uyy, c(k), e(k)
an “(k) are kinematically admlssib e, i.6.

A~

€ (k) = L1(u(k)) + Lll(UOaU(k)) + “(k)Lll(uo(l),u(k)) (E-12a)

A

O(k) = H(e(k)) (E-12b)
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Taking the difference of equations (E-12a,b) and (E-1la,b) gives

A

Sy T Ty = B

@~ fw’

A _ - &) _ (E-13)
0 T S0 T I g0 ) T Y-y

from which it is observed that the difference o k) ~ 9(k is of the order
of prebuckling rotations, the square of which is negligible for our
moderate rotation equations. Forming the work term o(y)-°e(k) (required

in the Rayleigh quotient) from equations (E-13), and neglecting terms of
the order of the square of prebuckling rotations, gives

~ ~

) T 0wty T

L1 (ug D) (E-14)

() M) T U(k-1)

Setting Su = u, in equation (E-llc), Su = u(y) in equation (E-4c)
evaluated for the i=th eigenvalue, and subtracting the results gives the
relation

(U350, 38 )20 xy? = (U50438 0 1y29 1)) /Wy (E-15)

From equation (E-6) it follows that

(ui’ci;u(k) ’G(k)) - (ui’ci;u(k)’o(k))
= (0 - o(k))-Lll(uo(l),ui) (E-16)

Since as observed previously ¢ k) T %k is of the order of prebuckling
rotations, this difference of inner p§o%ucts is of the order of the
square of prebuckling rotations and therefore negligible. Hence, it
follows from equations (E-10) and (E-15) that the expansion coefficients
Ajk for the functions u(k) s a(k) satisfy the relation

Ape = A3 k1M (B-17)
from which it follows that as k » «

u(k) > uy

R (E-18)

O(k) + 01

proving convergence of the iteration method.
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Substituting u(y), S(k)* . E(k for uj, 04, €i in the Rayleigh quotient
given in equation (E-8), eflminét}ng 9 (k) "€ (k) through use of equation
(E-14), eliminating (k)€ (K through use oé equation (E-1llc) with
6u = ugy, and solving for the corresponding eigenvalue estimate H (k)
gives the result

P T T a0 1) % -1 o 2 ) 3 ) *% (k) (E-19)

Since, as already noted, the inner product is insensitive to the difference
oik) = 9Ky to the accuracy of our moderate rotation equations, U y) 1is
also given’by equation (E-19) with 0(x) replaced by O(k)* To this form can
be applied the completeness relation

(1) *% ) ¥ (k1) % (k-1) =i£](_ui’oi;ui’ci)AikAi,k—l (E-20)
giving in view of equation (E-17) the result
= . 2 . 2 -
U(k) iZ;i(ui’oi’ui’oi)Aik igiui’ci’ui’ai)Aik (E~-21)

Equation (E-21) shows that, by use of the Rayleigh quotient, H (k)
converges to y; at a much faster rate than U(k)s O(k)converge to uj, 0j.

Finally, since M(k) * M1, and from equation (E-17) MUy T U1y
it follows from equations (E-13) that oK) O (k) Hence, 1in spite o%
its inadmissibility

U(k) + 01 | E-22)

Thus, in the practical application of the iteration procedure, at no time
is it necessary to work with the modified variables O(k) °OF €(k)*

69



10.

11.

12.

70

REFERENCES

Hartung, R. F.: An Assessment of Current Capability for Computer
Analyses of Shell Structures. Computers & Structures (Pergamon
Press), vol. 1, 1971, pp. 3-32.

Anderson, M. S.; Fulton, R. E.; Heard, W. L.; and Walz, J. E.:
Stress, Buckling, and Vibration Analyses of Shells of Revolution.
Computers & Structures (Pergamon Press), vol. 1, 1971, pp. 157-192.

Bushnell, D.: Stress, Stability, and Vibration of Complex Shells
of Revolution: Analysis and User's Manual for BOSOR3. SAMSO TR
69-375, LMSC Report N-5J-69-1, Lockheed Missiles and Space Company,
Sept. 1969.

Schaeffer, H. G.: Computer Program for Finite-Difference Solution
of Shells of Revolution under Asymmetric Loads. NASA TN D-3926,
May 1967.

Cooper, P. A.: Vibration and Buckling of Prestressed Shells of
Revolution. NASA TN D-3831, March 1967.

Kalnins, A.: Static, Free Vibration, and Stability Analysis of
Thin, Elastic Shells of Revolution. Tech. Rept. AFFDL-TR-68-144,
Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force
Base, Ohio, Mar. 1969.

Zarghamee, M. S,; and Robinson, A. R.: A Numerical Method for
Analysis of Free Vibrations of Spherical Shells. ATAA J., vol. 5,
no. 7, July 1967, pp. 1256-1261.

Cohen, G. A.: User Document for Computer Programs for Ring-Stiffened
Shells of Revolution. NASA CR-2086, 1973.

Cohen, G. A.: Computer Analysis of Asymmetrical Deformation of
Orthotropic Shells of Revolution. AIAA J., vol. 2, no. 5, May 1964,
PP. 932-934.

Cohen, G. A.: Computer Analysis of Free Vibrations of Ring-
Stiffened Orthotropic Shells of Revolution. ATAA J., vol. 3, no. 12,
Dec. 1965, pp. 2305-2312.

Cohen, G. A.: Computer Analysis of Asymmetric Buckling of Ring-
Stiffened Orthotropic Shells of Revolution. AIAA J., vol. 6,
no. 1, Jan. 1968, pp. 141-149.

Cohen, G. A.: Computer Analysis of Imperfection Sensitivity of
Ring-Stiffened Orthotropic Shells of Revolution. AIAA J., vol. 9,
no. 6, June 1971, pp. 1032-1039.




13.

140

15.

16.

17.

18.

19.

20.

21.

Cohen, G. A.: Computer Program for Analysis of Imperfection
Sensitivity of Ring-Stiffened Shells of Revolution. NASA CR-1801,
1971.

Sanders, J. L., Jr.: Nonlinear Theories for Thin Shells. Quart.
Appl. Math., vol. 21, 1963, pp. 21-36.

Novozhilov, V. V.: The Theory of Thin Shells. P. Noordhoff,
Groningen, 1959, Chpt. 1.

Sokolnikoff, I. S.: Mathematical Theory of Elasticity. McGraw~
Hill Book Co., Inc., 2nd Ed., 1956, Chpt. 4.

Jordan, P. F.; and Shelly, P. E.: Stabilization of Unstable Two-
Point Boundary Value Problems. AIAA J., vol. 4, no. 5, May 1966,
PP. 923-924.

Cohen, G. A.: Effect of a Nonlinear Prebuckling State on the Post-
buckling Behavior and Imperfection Sensitivity of Elastic Structures.
ATAA J., vol. 6, no. 8, Aug. 1968.

Thurston, G. A.: Newton's Method Applied to Problems in Nonlinear
Mechanics., J. Appl. Mech., vol. 32, June 1965, pp. 383-388.

Kalnins, A.; and Lestingi, J. F.: On Nonlinear Analysis of Elastic
Shells of Revolution. J. Appl. Mech., vol. 34, Mar. 1967, pp. 59-64.

Greenbaum, G. A.,: Comments on "Numerical Analysis of Unsymmetrical

Bending of Shells of Revolution." AIAA J., vol. 2, no. 3, Mar. 1964,
pPP. 590-591.

71



TABLE I

CIRCUMFERENTIAL VARTATION OF HARMONIC VARIABLES

Symmetric Antisymmetric
cos nod sin n¢ cos no¢ sin n¢
Xy,X3 X, X3 X1,X3
Shell L, L, Ly L,
Load @1(0),@2(0) 912(0) @12(0) @1(0),@2(0)
Varisbles | o (1) o, (1) 0y, 01, 0, (1,0, (1)
61,0 91,02
Ring FxsFy F¢ F¢ Fx ,Fy
Load N, Ny, Ny Ny, Ny Ny
Variables EA6¢ EA9¢
P,Q S S P,Q
T1,Tp T2 Ti2 T),T;
Mp,M, M2 Mo My,Mp
Shell u,w v v u,w
Response Esn Esn
Variables X Vs 0 ¥,6 X
€1s€2 €12 €12 €15€2
Klsk2 K12 Ki2 K1sK2
O0gs0¢s0zs0gz Og¢29¢z Og¢s9¢z Ogs0¢s0210gz
Ty Ty
Ring Mx’My M¢ M¢ Mx’My
Response Uxoly Y Y Uxsly
Variables b Yxo Wy Vo Wy Yo
€o €6
KysKy T T KgsKy
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A SUITABLE
REFERENCE SURFACE

— AXIS OF REVOLUTION

NOTE: The reference surface may be chosen as any convenient
continuous surface within or near the shell wall.

FIGURE 1. HYPOTHETICAL BRANCHED SHELL PROFILE
(WITH FIVE BRANCH POINTS AND ONE CLOSED BRANCH)
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POSITIVE DIRECTIONS FOR SHELL DISPLACEMENTS,

FIGURE 2.
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POSITIVE DIRECTIONS FOR RING VARIABLES

FIGURE 3.
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BRANCH POINT

1,41

iy

NOTE: Arrows indicate direction of increasing s.
Subintervals 1i;, i,, i3, and i, (here J = 4)
enter the branch point, whereas subinterval
i+l exits the branch point. The branch
point is denoted as i;,1 on entering sub-
intervals and iJ+l,0 on the exiting subinterval.

FIGURE 4. HYPOTHETICAL BRANCH POINT BOUNDARY
(WITH FOUR ENTERING SUBINTERVALS)




r A A )
A — — Rt
Ao AO
iy Ko
g — .

LINEAR STIFFNESS

AREA EQUALS WORK OF EXTERNAL
LOADS DURING LOADING FROM
A=0 to A = A

(a) LOAD VS. WORK DEFLECTION (b) LOAD VS. STIFFNESS
K = d\/daA

FIGURE 5. TYPICAL PREBUCKLING LOADING DIAGRAMS

NASA-Langley, 1973 —— 32 CR-2085



